Loading…

Posterior Cramer-Rao bounds for discrete-time nonlinear filtering

A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1998-05, Vol.46 (5), p.1386-1396
Main Authors: Tichavsky, P., Muravchik, C.H., Nehorai, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mean-square error lower bound for the discrete-time nonlinear filtering problem is derived based on the van Trees (1968) (posterior) version of the Cramer-Rao inequality. This lower bound is applicable to multidimensional nonlinear, possibly non-Gaussian, dynamical systems and is more general than the previous bounds in the literature. The case of singular conditional distribution of the one-step-ahead state vector given the present state is considered. The bound is evaluated for three important examples: the recursive estimation of slowly varying parameters of an autoregressive process, tracking a slowly varying frequency of a single cisoid in noise, and tracking parameters of a sinusoidal frequency with sinusoidal phase modulation.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.668800