Loading…
Learning while preventing mechanical failure due to random motions
Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motio...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 187 |
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Meijdam, H. J. Plooij, M. C. Caarls, W. |
description | Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance. |
doi_str_mv | 10.1109/IROS.2013.6696351 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696351</ieee_id><sourcerecordid>6696351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3</originalsourceid><addsrcrecordid>eNo9j81KxDAURqMoOI7zAOImL9B6kzQ36VIHfwYKA_6shzS9dSJtOqQdxbdXcXB1DmfxwcfYpYBcCCivV0_r51yCUDliiUqLI3YuCjTqx609ZjMptMrAIp78u7ZnbDGO7wAgDBppYcZuK3IphvjGP7ehI75L9EFx-g09-a2LwbuOty50-0S82ROfBp5cbIae98MUhjhesNPWdSMtDpyz1_u7l-VjVq0fVsubKgtS2ClTri20RmktFCQNaNOUyloCQI-GaqdbFMp7pMaiLEpXS4TaGymAVN02as6u_nYDEW12KfQufW0O99U3wl1MKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning while preventing mechanical failure due to random motions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</creator><creatorcontrib>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</creatorcontrib><description>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Gears ; Low earth orbit satellites ; Markov processes ; Robots ; Stress ; Torque</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.182-187</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meijdam, H. J.</creatorcontrib><creatorcontrib>Plooij, M. C.</creatorcontrib><creatorcontrib>Caarls, W.</creatorcontrib><title>Learning while preventing mechanical failure due to random motions</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</description><subject>Approximation algorithms</subject><subject>Gears</subject><subject>Low earth orbit satellites</subject><subject>Markov processes</subject><subject>Robots</subject><subject>Stress</subject><subject>Torque</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81KxDAURqMoOI7zAOImL9B6kzQ36VIHfwYKA_6shzS9dSJtOqQdxbdXcXB1DmfxwcfYpYBcCCivV0_r51yCUDliiUqLI3YuCjTqx609ZjMptMrAIp78u7ZnbDGO7wAgDBppYcZuK3IphvjGP7ehI75L9EFx-g09-a2LwbuOty50-0S82ROfBp5cbIae98MUhjhesNPWdSMtDpyz1_u7l-VjVq0fVsubKgtS2ClTri20RmktFCQNaNOUyloCQI-GaqdbFMp7pMaiLEpXS4TaGymAVN02as6u_nYDEW12KfQufW0O99U3wl1MKw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Meijdam, H. J.</creator><creator>Plooij, M. C.</creator><creator>Caarls, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Learning while preventing mechanical failure due to random motions</title><author>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation algorithms</topic><topic>Gears</topic><topic>Low earth orbit satellites</topic><topic>Markov processes</topic><topic>Robots</topic><topic>Stress</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Meijdam, H. J.</creatorcontrib><creatorcontrib>Plooij, M. C.</creatorcontrib><creatorcontrib>Caarls, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meijdam, H. J.</au><au>Plooij, M. C.</au><au>Caarls, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning while preventing mechanical failure due to random motions</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>182</spage><epage>187</epage><pages>182-187</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696351</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-0858 |
ispartof | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.182-187 |
issn | 2153-0858 2153-0866 |
language | eng |
recordid | cdi_ieee_primary_6696351 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Gears Low earth orbit satellites Markov processes Robots Stress Torque |
title | Learning while preventing mechanical failure due to random motions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20while%20preventing%20mechanical%20failure%20due%20to%20random%20motions&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Meijdam,%20H.%20J.&rft.date=2013-11&rft.spage=182&rft.epage=187&rft.pages=182-187&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696351&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&rft_dat=%3Cieee_6IE%3E6696351%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696351&rfr_iscdi=true |