Loading…

Learning while preventing mechanical failure due to random motions

Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motio...

Full description

Saved in:
Bibliographic Details
Main Authors: Meijdam, H. J., Plooij, M. C., Caarls, W.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 187
container_issue
container_start_page 182
container_title
container_volume
creator Meijdam, H. J.
Plooij, M. C.
Caarls, W.
description Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.
doi_str_mv 10.1109/IROS.2013.6696351
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6696351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6696351</ieee_id><sourcerecordid>6696351</sourcerecordid><originalsourceid>FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3</originalsourceid><addsrcrecordid>eNo9j81KxDAURqMoOI7zAOImL9B6kzQ36VIHfwYKA_6shzS9dSJtOqQdxbdXcXB1DmfxwcfYpYBcCCivV0_r51yCUDliiUqLI3YuCjTqx609ZjMptMrAIp78u7ZnbDGO7wAgDBppYcZuK3IphvjGP7ehI75L9EFx-g09-a2LwbuOty50-0S82ROfBp5cbIae98MUhjhesNPWdSMtDpyz1_u7l-VjVq0fVsubKgtS2ClTri20RmktFCQNaNOUyloCQI-GaqdbFMp7pMaiLEpXS4TaGymAVN02as6u_nYDEW12KfQufW0O99U3wl1MKw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning while preventing mechanical failure due to random motions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</creator><creatorcontrib>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</creatorcontrib><description>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</description><identifier>ISSN: 2153-0858</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 1467363588</identifier><identifier>EISBN: 9781467363587</identifier><identifier>DOI: 10.1109/IROS.2013.6696351</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Gears ; Low earth orbit satellites ; Markov processes ; Robots ; Stress ; Torque</subject><ispartof>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.182-187</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6696351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6696351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meijdam, H. J.</creatorcontrib><creatorcontrib>Plooij, M. C.</creatorcontrib><creatorcontrib>Caarls, W.</creatorcontrib><title>Learning while preventing mechanical failure due to random motions</title><title>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</description><subject>Approximation algorithms</subject><subject>Gears</subject><subject>Low earth orbit satellites</subject><subject>Markov processes</subject><subject>Robots</subject><subject>Stress</subject><subject>Torque</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1467363588</isbn><isbn>9781467363587</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9j81KxDAURqMoOI7zAOImL9B6kzQ36VIHfwYKA_6shzS9dSJtOqQdxbdXcXB1DmfxwcfYpYBcCCivV0_r51yCUDliiUqLI3YuCjTqx609ZjMptMrAIp78u7ZnbDGO7wAgDBppYcZuK3IphvjGP7ehI75L9EFx-g09-a2LwbuOty50-0S82ROfBp5cbIae98MUhjhesNPWdSMtDpyz1_u7l-VjVq0fVsubKgtS2ClTri20RmktFCQNaNOUyloCQI-GaqdbFMp7pMaiLEpXS4TaGymAVN02as6u_nYDEW12KfQufW0O99U3wl1MKw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Meijdam, H. J.</creator><creator>Plooij, M. C.</creator><creator>Caarls, W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201311</creationdate><title>Learning while preventing mechanical failure due to random motions</title><author>Meijdam, H. J. ; Plooij, M. C. ; Caarls, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation algorithms</topic><topic>Gears</topic><topic>Low earth orbit satellites</topic><topic>Markov processes</topic><topic>Robots</topic><topic>Stress</topic><topic>Torque</topic><toplevel>online_resources</toplevel><creatorcontrib>Meijdam, H. J.</creatorcontrib><creatorcontrib>Plooij, M. C.</creatorcontrib><creatorcontrib>Caarls, W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meijdam, H. J.</au><au>Plooij, M. C.</au><au>Caarls, W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning while preventing mechanical failure due to random motions</atitle><btitle>2013 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2013-11</date><risdate>2013</risdate><spage>182</spage><epage>187</epage><pages>182-187</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><eisbn>1467363588</eisbn><eisbn>9781467363587</eisbn><abstract>Learning can be used to optimize robot motions to new situations. Learning motions can cause high frequency random motions in the exploration phase and can cause failure before the motion is learned. The mean time between failures (MTBF) of a robot can be predicted while it is performing these motions. The predicted MTBF in the exploration phase can be increased by filtering actions or possible actions of the algorithm. We investigated five algorithms that apply this filtering in various ways and compared them to SARSA(λ) learning. In general, increasing the MTBF decreases the learning performance. Three of the investigated algorithms are unable to increase the MTBF while keeping their learning performance approximately equal to SARSA(λ). Two algorithms are able to do this: the PADA algorithm and the low-pass filter algorithm. In case of LEO, a bipedal walking robot that tries to optimize a walking motion, the MTBF can be increased by a factor of 108 compared to SARSA(λ). This indicates that, in some cases, failures due to high frequency random motions can be prevented without decreasing the performance.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2013.6696351</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, p.182-187
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6696351
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Gears
Low earth orbit satellites
Markov processes
Robots
Stress
Torque
title Learning while preventing mechanical failure due to random motions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20while%20preventing%20mechanical%20failure%20due%20to%20random%20motions&rft.btitle=2013%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Meijdam,%20H.%20J.&rft.date=2013-11&rft.spage=182&rft.epage=187&rft.pages=182-187&rft.issn=2153-0858&rft.eissn=2153-0866&rft_id=info:doi/10.1109/IROS.2013.6696351&rft.eisbn=1467363588&rft.eisbn_list=9781467363587&rft_dat=%3Cieee_6IE%3E6696351%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i218t-3af455628804e27057d9388e006c67eba5f613cc6ed86249ab260bc7210e3bfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6696351&rfr_iscdi=true