Loading…

Efficient trajectory optimization using a sparse model

The "timed elastic band" approach optimizes robot trajectories by subsequent modification of an initial trajectory generated by a global planner. The objectives considered in the trajectory optimization include but are not limited to the overall path length, trajectory execution time, sepa...

Full description

Saved in:
Bibliographic Details
Main Authors: Rosmann, Christoph, Feiten, Wendelin, Wosch, Thomas, Hoffmann, Frank, Bertram, Torsten
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c223t-62785a8224db41b4c8a82519afca6c72f01faf874eaf7db3acf5d9105661dbbc3
cites
container_end_page 143
container_issue
container_start_page 138
container_title
container_volume
creator Rosmann, Christoph
Feiten, Wendelin
Wosch, Thomas
Hoffmann, Frank
Bertram, Torsten
description The "timed elastic band" approach optimizes robot trajectories by subsequent modification of an initial trajectory generated by a global planner. The objectives considered in the trajectory optimization include but are not limited to the overall path length, trajectory execution time, separation from obstacles, passing through intermediate way points and compliance with the robots dynamic, kinematic and geometric constraints. "Timed elastic bands" explicitly consider spatial-temporal aspects of the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The trajectory planning operates in real time such that "timed elastic bands" cope with dynamic obstacles and motion constraints. The "timed elastic band problem" is formulated as a scalarized multi-objective optimization problem. Most objectives are local and relate to only a small subset of parameters as they only depend on a few consecutive robot states. This local structure results in a sparse system matrix, which allows the utilization of fast and efficient optimization techniques such as the open-source framework "g2o" for solving "timed elastic band" problems. The "g2o" sparse system solvers have been successfully applied to VSLAM problems. This contribution describes the application and adaptation of the g2o-framework in the context of trajectory modification with the "timed elastic band". Results from simulations and experiments with a real robot demonstrate that the implementation is robust and computationally efficient.
doi_str_mv 10.1109/ECMR.2013.6698833
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6698833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6698833</ieee_id><sourcerecordid>6698833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-62785a8224db41b4c8a82519afca6c72f01faf874eaf7db3acf5d9105661dbbc3</originalsourceid><addsrcrecordid>eNotj8tKxDAYRuNCUMY-gLjJC7TmT9JcllLqBWYQRNfD3zSRDNMLSVyMT--AAx8czubAR8g9sAaA2ce-2300nIFolLLGCHFFKqsNSG0t40roG1LlfGCMgdbnqVui-hCii34utCQ8eFeWdKLLWuIUf7HEZaY_Oc7fFGleMWVPp2X0xztyHfCYfXXhhnw995_da719f3nrnra141yUWnFtWjScy3GQMEhnztKCxeBQOc0Dg4DBaOkx6HEQ6EI7WmCtUjAOgxMb8vDfjd77_ZrihOm0v7wTf7_zRd4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient trajectory optimization using a sparse model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rosmann, Christoph ; Feiten, Wendelin ; Wosch, Thomas ; Hoffmann, Frank ; Bertram, Torsten</creator><creatorcontrib>Rosmann, Christoph ; Feiten, Wendelin ; Wosch, Thomas ; Hoffmann, Frank ; Bertram, Torsten</creatorcontrib><description>The "timed elastic band" approach optimizes robot trajectories by subsequent modification of an initial trajectory generated by a global planner. The objectives considered in the trajectory optimization include but are not limited to the overall path length, trajectory execution time, separation from obstacles, passing through intermediate way points and compliance with the robots dynamic, kinematic and geometric constraints. "Timed elastic bands" explicitly consider spatial-temporal aspects of the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The trajectory planning operates in real time such that "timed elastic bands" cope with dynamic obstacles and motion constraints. The "timed elastic band problem" is formulated as a scalarized multi-objective optimization problem. Most objectives are local and relate to only a small subset of parameters as they only depend on a few consecutive robot states. This local structure results in a sparse system matrix, which allows the utilization of fast and efficient optimization techniques such as the open-source framework "g2o" for solving "timed elastic band" problems. The "g2o" sparse system solvers have been successfully applied to VSLAM problems. This contribution describes the application and adaptation of the g2o-framework in the context of trajectory modification with the "timed elastic band". Results from simulations and experiments with a real robot demonstrate that the implementation is robust and computationally efficient.</description><identifier>EISBN: 9781479902637</identifier><identifier>EISBN: 1479902632</identifier><identifier>DOI: 10.1109/ECMR.2013.6698833</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Collision avoidance ; Linear programming ; Modeling ; Optimization ; Robots ; Trajectory</subject><ispartof>2013 European Conference on Mobile Robots, 2013, p.138-143</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-62785a8224db41b4c8a82519afca6c72f01faf874eaf7db3acf5d9105661dbbc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6698833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6698833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rosmann, Christoph</creatorcontrib><creatorcontrib>Feiten, Wendelin</creatorcontrib><creatorcontrib>Wosch, Thomas</creatorcontrib><creatorcontrib>Hoffmann, Frank</creatorcontrib><creatorcontrib>Bertram, Torsten</creatorcontrib><title>Efficient trajectory optimization using a sparse model</title><title>2013 European Conference on Mobile Robots</title><addtitle>ECMR</addtitle><description>The "timed elastic band" approach optimizes robot trajectories by subsequent modification of an initial trajectory generated by a global planner. The objectives considered in the trajectory optimization include but are not limited to the overall path length, trajectory execution time, separation from obstacles, passing through intermediate way points and compliance with the robots dynamic, kinematic and geometric constraints. "Timed elastic bands" explicitly consider spatial-temporal aspects of the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The trajectory planning operates in real time such that "timed elastic bands" cope with dynamic obstacles and motion constraints. The "timed elastic band problem" is formulated as a scalarized multi-objective optimization problem. Most objectives are local and relate to only a small subset of parameters as they only depend on a few consecutive robot states. This local structure results in a sparse system matrix, which allows the utilization of fast and efficient optimization techniques such as the open-source framework "g2o" for solving "timed elastic band" problems. The "g2o" sparse system solvers have been successfully applied to VSLAM problems. This contribution describes the application and adaptation of the g2o-framework in the context of trajectory modification with the "timed elastic band". Results from simulations and experiments with a real robot demonstrate that the implementation is robust and computationally efficient.</description><subject>Acceleration</subject><subject>Collision avoidance</subject><subject>Linear programming</subject><subject>Modeling</subject><subject>Optimization</subject><subject>Robots</subject><subject>Trajectory</subject><isbn>9781479902637</isbn><isbn>1479902632</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKxDAYRuNCUMY-gLjJC7TmT9JcllLqBWYQRNfD3zSRDNMLSVyMT--AAx8czubAR8g9sAaA2ce-2300nIFolLLGCHFFKqsNSG0t40roG1LlfGCMgdbnqVui-hCii34utCQ8eFeWdKLLWuIUf7HEZaY_Oc7fFGleMWVPp2X0xztyHfCYfXXhhnw995_da719f3nrnra141yUWnFtWjScy3GQMEhnztKCxeBQOc0Dg4DBaOkx6HEQ6EI7WmCtUjAOgxMb8vDfjd77_ZrihOm0v7wTf7_zRd4</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Rosmann, Christoph</creator><creator>Feiten, Wendelin</creator><creator>Wosch, Thomas</creator><creator>Hoffmann, Frank</creator><creator>Bertram, Torsten</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>Efficient trajectory optimization using a sparse model</title><author>Rosmann, Christoph ; Feiten, Wendelin ; Wosch, Thomas ; Hoffmann, Frank ; Bertram, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-62785a8224db41b4c8a82519afca6c72f01faf874eaf7db3acf5d9105661dbbc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Collision avoidance</topic><topic>Linear programming</topic><topic>Modeling</topic><topic>Optimization</topic><topic>Robots</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Rosmann, Christoph</creatorcontrib><creatorcontrib>Feiten, Wendelin</creatorcontrib><creatorcontrib>Wosch, Thomas</creatorcontrib><creatorcontrib>Hoffmann, Frank</creatorcontrib><creatorcontrib>Bertram, Torsten</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rosmann, Christoph</au><au>Feiten, Wendelin</au><au>Wosch, Thomas</au><au>Hoffmann, Frank</au><au>Bertram, Torsten</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient trajectory optimization using a sparse model</atitle><btitle>2013 European Conference on Mobile Robots</btitle><stitle>ECMR</stitle><date>2013-09</date><risdate>2013</risdate><spage>138</spage><epage>143</epage><pages>138-143</pages><eisbn>9781479902637</eisbn><eisbn>1479902632</eisbn><abstract>The "timed elastic band" approach optimizes robot trajectories by subsequent modification of an initial trajectory generated by a global planner. The objectives considered in the trajectory optimization include but are not limited to the overall path length, trajectory execution time, separation from obstacles, passing through intermediate way points and compliance with the robots dynamic, kinematic and geometric constraints. "Timed elastic bands" explicitly consider spatial-temporal aspects of the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The trajectory planning operates in real time such that "timed elastic bands" cope with dynamic obstacles and motion constraints. The "timed elastic band problem" is formulated as a scalarized multi-objective optimization problem. Most objectives are local and relate to only a small subset of parameters as they only depend on a few consecutive robot states. This local structure results in a sparse system matrix, which allows the utilization of fast and efficient optimization techniques such as the open-source framework "g2o" for solving "timed elastic band" problems. The "g2o" sparse system solvers have been successfully applied to VSLAM problems. This contribution describes the application and adaptation of the g2o-framework in the context of trajectory modification with the "timed elastic band". Results from simulations and experiments with a real robot demonstrate that the implementation is robust and computationally efficient.</abstract><pub>IEEE</pub><doi>10.1109/ECMR.2013.6698833</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781479902637
ispartof 2013 European Conference on Mobile Robots, 2013, p.138-143
issn
language eng
recordid cdi_ieee_primary_6698833
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Collision avoidance
Linear programming
Modeling
Optimization
Robots
Trajectory
title Efficient trajectory optimization using a sparse model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20trajectory%20optimization%20using%20a%20sparse%20model&rft.btitle=2013%20European%20Conference%20on%20Mobile%20Robots&rft.au=Rosmann,%20Christoph&rft.date=2013-09&rft.spage=138&rft.epage=143&rft.pages=138-143&rft_id=info:doi/10.1109/ECMR.2013.6698833&rft.eisbn=9781479902637&rft.eisbn_list=1479902632&rft_dat=%3Cieee_6IE%3E6698833%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c223t-62785a8224db41b4c8a82519afca6c72f01faf874eaf7db3acf5d9105661dbbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6698833&rfr_iscdi=true