Loading…

Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm

Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradien...

Full description

Saved in:
Bibliographic Details
Main Authors: Desai, Shrinivas D., Megha, G., Avinash, B., Sudhanva, K., Rasiya, S., Linganagouda, K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 218
container_issue
container_start_page 213
container_title
container_volume
creator Desai, Shrinivas D.
Megha, G.
Avinash, B.
Sudhanva, K.
Rasiya, S.
Linganagouda, K.
description Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.
doi_str_mv 10.1109/CUBE.2013.47
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6701506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6701506</ieee_id><sourcerecordid>6701506</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123</originalsourceid><addsrcrecordid>eNotj01Lw0AURceFoNTs3LmZP5A4H8m8zLKmtRYaXGhxJWVm8hJHMk2ZBKH_3mDd3AsXzoVDyD1nGedMP1b7p3UmGJdZDlck0VDyHLQWQubFDUnG8ZsxxrUCpYtb8rnCCd3khyMdWlp7Fwdneudb78zf6o905Ts_mZ7WJoShiyaM1J7pNpzi8INNWtebD_qGXcDjdGGWfTdEP32FO3Ldmn7E5L8XZP-8fq9e0t3rZlstd6nnUEyp47xpCyWkzNFqXiJasMbO4UpVgtV6NpCqVA04aBkAWKVQCCXVLMKFXJCHy69HxMMp-mDi-aCA8YIp-Qua8FFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</creator><creatorcontrib>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</creatorcontrib><description>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</description><identifier>EISBN: 9781479922345</identifier><identifier>EISBN: 9781479922352</identifier><identifier>EISBN: 147992234X</identifier><identifier>EISBN: 1479922358</identifier><identifier>DOI: 10.1109/CUBE.2013.47</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive median filter ; Breast cancer ; Feature extraction ; Filtering algorithms ; Gabor filters ; Image segmentation ; mammography ; microcalcification ; morphological ; multiscale gradient ; watershed segmentation</subject><ispartof>2013 International Conference on Cloud &amp; Ubiquitous Computing &amp; Emerging Technologies, 2013, p.213-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6701506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6701506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Desai, Shrinivas D.</creatorcontrib><creatorcontrib>Megha, G.</creatorcontrib><creatorcontrib>Avinash, B.</creatorcontrib><creatorcontrib>Sudhanva, K.</creatorcontrib><creatorcontrib>Rasiya, S.</creatorcontrib><creatorcontrib>Linganagouda, K.</creatorcontrib><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><title>2013 International Conference on Cloud &amp; Ubiquitous Computing &amp; Emerging Technologies</title><addtitle>cube</addtitle><description>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</description><subject>adaptive median filter</subject><subject>Breast cancer</subject><subject>Feature extraction</subject><subject>Filtering algorithms</subject><subject>Gabor filters</subject><subject>Image segmentation</subject><subject>mammography</subject><subject>microcalcification</subject><subject>morphological</subject><subject>multiscale gradient</subject><subject>watershed segmentation</subject><isbn>9781479922345</isbn><isbn>9781479922352</isbn><isbn>147992234X</isbn><isbn>1479922358</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURceFoNTs3LmZP5A4H8m8zLKmtRYaXGhxJWVm8hJHMk2ZBKH_3mDd3AsXzoVDyD1nGedMP1b7p3UmGJdZDlck0VDyHLQWQubFDUnG8ZsxxrUCpYtb8rnCCd3khyMdWlp7Fwdneudb78zf6o905Ts_mZ7WJoShiyaM1J7pNpzi8INNWtebD_qGXcDjdGGWfTdEP32FO3Ldmn7E5L8XZP-8fq9e0t3rZlstd6nnUEyp47xpCyWkzNFqXiJasMbO4UpVgtV6NpCqVA04aBkAWKVQCCXVLMKFXJCHy69HxMMp-mDi-aCA8YIp-Qua8FFL</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Desai, Shrinivas D.</creator><creator>Megha, G.</creator><creator>Avinash, B.</creator><creator>Sudhanva, K.</creator><creator>Rasiya, S.</creator><creator>Linganagouda, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><author>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptive median filter</topic><topic>Breast cancer</topic><topic>Feature extraction</topic><topic>Filtering algorithms</topic><topic>Gabor filters</topic><topic>Image segmentation</topic><topic>mammography</topic><topic>microcalcification</topic><topic>morphological</topic><topic>multiscale gradient</topic><topic>watershed segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, Shrinivas D.</creatorcontrib><creatorcontrib>Megha, G.</creatorcontrib><creatorcontrib>Avinash, B.</creatorcontrib><creatorcontrib>Sudhanva, K.</creatorcontrib><creatorcontrib>Rasiya, S.</creatorcontrib><creatorcontrib>Linganagouda, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Desai, Shrinivas D.</au><au>Megha, G.</au><au>Avinash, B.</au><au>Sudhanva, K.</au><au>Rasiya, S.</au><au>Linganagouda, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</atitle><btitle>2013 International Conference on Cloud &amp; Ubiquitous Computing &amp; Emerging Technologies</btitle><stitle>cube</stitle><date>2013-11</date><risdate>2013</risdate><spage>213</spage><epage>218</epage><pages>213-218</pages><eisbn>9781479922345</eisbn><eisbn>9781479922352</eisbn><eisbn>147992234X</eisbn><eisbn>1479922358</eisbn><coden>IEEPAD</coden><abstract>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</abstract><pub>IEEE</pub><doi>10.1109/CUBE.2013.47</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781479922345
ispartof 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies, 2013, p.213-218
issn
language eng
recordid cdi_ieee_primary_6701506
source IEEE Electronic Library (IEL) Conference Proceedings
subjects adaptive median filter
Breast cancer
Feature extraction
Filtering algorithms
Gabor filters
Image segmentation
mammography
microcalcification
morphological
multiscale gradient
watershed segmentation
title Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Microcalcification%20in%20Digital%20Mammograms%20by%20Improved-MMGW%20Segmentation%20Algorithm&rft.btitle=2013%20International%20Conference%20on%20Cloud%20&%20Ubiquitous%20Computing%20&%20Emerging%20Technologies&rft.au=Desai,%20Shrinivas%20D.&rft.date=2013-11&rft.spage=213&rft.epage=218&rft.pages=213-218&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CUBE.2013.47&rft.eisbn=9781479922345&rft.eisbn_list=9781479922352&rft.eisbn_list=147992234X&rft.eisbn_list=1479922358&rft_dat=%3Cieee_6IE%3E6701506%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6701506&rfr_iscdi=true