Loading…
Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm
Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradien...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 218 |
container_issue | |
container_start_page | 213 |
container_title | |
container_volume | |
creator | Desai, Shrinivas D. Megha, G. Avinash, B. Sudhanva, K. Rasiya, S. Linganagouda, K. |
description | Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image. |
doi_str_mv | 10.1109/CUBE.2013.47 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6701506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6701506</ieee_id><sourcerecordid>6701506</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123</originalsourceid><addsrcrecordid>eNotj01Lw0AURceFoNTs3LmZP5A4H8m8zLKmtRYaXGhxJWVm8hJHMk2ZBKH_3mDd3AsXzoVDyD1nGedMP1b7p3UmGJdZDlck0VDyHLQWQubFDUnG8ZsxxrUCpYtb8rnCCd3khyMdWlp7Fwdneudb78zf6o905Ts_mZ7WJoShiyaM1J7pNpzi8INNWtebD_qGXcDjdGGWfTdEP32FO3Ldmn7E5L8XZP-8fq9e0t3rZlstd6nnUEyp47xpCyWkzNFqXiJasMbO4UpVgtV6NpCqVA04aBkAWKVQCCXVLMKFXJCHy69HxMMp-mDi-aCA8YIp-Qua8FFL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</creator><creatorcontrib>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</creatorcontrib><description>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</description><identifier>EISBN: 9781479922345</identifier><identifier>EISBN: 9781479922352</identifier><identifier>EISBN: 147992234X</identifier><identifier>EISBN: 1479922358</identifier><identifier>DOI: 10.1109/CUBE.2013.47</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive median filter ; Breast cancer ; Feature extraction ; Filtering algorithms ; Gabor filters ; Image segmentation ; mammography ; microcalcification ; morphological ; multiscale gradient ; watershed segmentation</subject><ispartof>2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies, 2013, p.213-218</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6701506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6701506$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Desai, Shrinivas D.</creatorcontrib><creatorcontrib>Megha, G.</creatorcontrib><creatorcontrib>Avinash, B.</creatorcontrib><creatorcontrib>Sudhanva, K.</creatorcontrib><creatorcontrib>Rasiya, S.</creatorcontrib><creatorcontrib>Linganagouda, K.</creatorcontrib><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><title>2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies</title><addtitle>cube</addtitle><description>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</description><subject>adaptive median filter</subject><subject>Breast cancer</subject><subject>Feature extraction</subject><subject>Filtering algorithms</subject><subject>Gabor filters</subject><subject>Image segmentation</subject><subject>mammography</subject><subject>microcalcification</subject><subject>morphological</subject><subject>multiscale gradient</subject><subject>watershed segmentation</subject><isbn>9781479922345</isbn><isbn>9781479922352</isbn><isbn>147992234X</isbn><isbn>1479922358</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AURceFoNTs3LmZP5A4H8m8zLKmtRYaXGhxJWVm8hJHMk2ZBKH_3mDd3AsXzoVDyD1nGedMP1b7p3UmGJdZDlck0VDyHLQWQubFDUnG8ZsxxrUCpYtb8rnCCd3khyMdWlp7Fwdneudb78zf6o905Ts_mZ7WJoShiyaM1J7pNpzi8INNWtebD_qGXcDjdGGWfTdEP32FO3Ldmn7E5L8XZP-8fq9e0t3rZlstd6nnUEyp47xpCyWkzNFqXiJasMbO4UpVgtV6NpCqVA04aBkAWKVQCCXVLMKFXJCHy69HxMMp-mDi-aCA8YIp-Qua8FFL</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Desai, Shrinivas D.</creator><creator>Megha, G.</creator><creator>Avinash, B.</creator><creator>Sudhanva, K.</creator><creator>Rasiya, S.</creator><creator>Linganagouda, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</title><author>Desai, Shrinivas D. ; Megha, G. ; Avinash, B. ; Sudhanva, K. ; Rasiya, S. ; Linganagouda, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptive median filter</topic><topic>Breast cancer</topic><topic>Feature extraction</topic><topic>Filtering algorithms</topic><topic>Gabor filters</topic><topic>Image segmentation</topic><topic>mammography</topic><topic>microcalcification</topic><topic>morphological</topic><topic>multiscale gradient</topic><topic>watershed segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, Shrinivas D.</creatorcontrib><creatorcontrib>Megha, G.</creatorcontrib><creatorcontrib>Avinash, B.</creatorcontrib><creatorcontrib>Sudhanva, K.</creatorcontrib><creatorcontrib>Rasiya, S.</creatorcontrib><creatorcontrib>Linganagouda, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Desai, Shrinivas D.</au><au>Megha, G.</au><au>Avinash, B.</au><au>Sudhanva, K.</au><au>Rasiya, S.</au><au>Linganagouda, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm</atitle><btitle>2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies</btitle><stitle>cube</stitle><date>2013-11</date><risdate>2013</risdate><spage>213</spage><epage>218</epage><pages>213-218</pages><eisbn>9781479922345</eisbn><eisbn>9781479922352</eisbn><eisbn>147992234X</eisbn><eisbn>1479922358</eisbn><coden>IEEPAD</coden><abstract>Breast cancer represents the most frequently diagnosed cancer in women. In order to reduce mortality, early detection of breast cancer is important, because diagnosis is more likely to be successful in the early stages of the disease. This paper presents an improved multi-scale morphological gradient watershed segmentation method for automatic detection of clustered micro calcification in digitized mammograms. We use adaptive median filter for preprocessing and incorporated corrections after watershed segmentation by cloned data. This correction has led to better detection and localization of micro calcifications. By comparing our results with original multiscale morphological watershed segmentation method, we proved that the proposed technique is better and performance is improved by approximately 20%. The true positive rate and false positive rate are used to evaluate the performance of the proposed technique. For experimental purpose the dataset from Mammographic Image Analysis Society database and few data collected from local diagnostic center. The result shows achievement of true positive rate of about 95.3% at the rate of 0.14 false positive per image.</abstract><pub>IEEE</pub><doi>10.1109/CUBE.2013.47</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9781479922345 |
ispartof | 2013 International Conference on Cloud & Ubiquitous Computing & Emerging Technologies, 2013, p.213-218 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6701506 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | adaptive median filter Breast cancer Feature extraction Filtering algorithms Gabor filters Image segmentation mammography microcalcification morphological multiscale gradient watershed segmentation |
title | Detection of Microcalcification in Digital Mammograms by Improved-MMGW Segmentation Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20Microcalcification%20in%20Digital%20Mammograms%20by%20Improved-MMGW%20Segmentation%20Algorithm&rft.btitle=2013%20International%20Conference%20on%20Cloud%20&%20Ubiquitous%20Computing%20&%20Emerging%20Technologies&rft.au=Desai,%20Shrinivas%20D.&rft.date=2013-11&rft.spage=213&rft.epage=218&rft.pages=213-218&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CUBE.2013.47&rft.eisbn=9781479922345&rft.eisbn_list=9781479922352&rft.eisbn_list=147992234X&rft.eisbn_list=1479922358&rft_dat=%3Cieee_6IE%3E6701506%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c11df562334eb918eeb7babb7bc8687b994793686d7c7f0777b66e22636196123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6701506&rfr_iscdi=true |