Loading…

An LCMV filter for single-channel noise cancellation and reduction in the time domain

In this paper, we consider a recent class of optimal rectangular filtering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters, that are o...

Full description

Saved in:
Bibliographic Details
Main Authors: Jensen, Jesper Rindom, Benesty, Jacob, Christensen, Mads Grosboll, Jingdong Chen
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Jensen, Jesper Rindom
Benesty, Jacob
Christensen, Mads Grosboll
Jingdong Chen
description In this paper, we consider a recent class of optimal rectangular filtering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Interestingly, these filters unify the ideas of optimal filtering and subspace methods. We propose an optimal LCMV filter in this framework with minimum output power that passes the desired signal undistorted and cancels correlated noise. The cancellation was not facilitated by the filters derived so far in this framework. The results show that the proposed filter can achieve output SNRs similar to that of competing filter designs, while having a much higher output signal-to-interference ratio. This is showed for both synthetic and real speech signals.
doi_str_mv 10.1109/WASPAA.2013.6701870
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6701870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6701870</ieee_id><sourcerecordid>6701870</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-46ad7b39dab6c65418d645ed5109ef8ccb8d8693b660ccc8928613e9aafb74773</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0CiVL6Bd34B1x8bcePZRTxkoJAgsKycuwbapQ4KAkL_p5XVzNnM9IZQtbANwDcXb6WT49luREc5EYbDtbwI7JyxoIyznFnhD0mC3DKMNDCnfx2CQxA2zNyPk3vnBfCKr4g2zLTurp_oW3qZhxpO4x0SvmtQxb2PmfsaB7ShDT4HLDr_JyGTH2OdMT4Gf4oZTrvkc6pRxqH3qd8QU5b3024OuSSbK-vnqtbVj_c3FVlzZIQfGZK-2ga6aJvdNCFAhu1KjAWP47Y2hAaG612stGahxCsE1aDROd92xhljFyS9f9uQsTdx5h6P37tDo_Ib8E8U04</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An LCMV filter for single-channel noise cancellation and reduction in the time domain</title><source>IEEE Xplore All Conference Series</source><creator>Jensen, Jesper Rindom ; Benesty, Jacob ; Christensen, Mads Grosboll ; Jingdong Chen</creator><creatorcontrib>Jensen, Jesper Rindom ; Benesty, Jacob ; Christensen, Mads Grosboll ; Jingdong Chen</creatorcontrib><description>In this paper, we consider a recent class of optimal rectangular filtering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Interestingly, these filters unify the ideas of optimal filtering and subspace methods. We propose an optimal LCMV filter in this framework with minimum output power that passes the desired signal undistorted and cancels correlated noise. The cancellation was not facilitated by the filters derived so far in this framework. The results show that the proposed filter can achieve output SNRs similar to that of competing filter designs, while having a much higher output signal-to-interference ratio. This is showed for both synthetic and real speech signals.</description><identifier>ISSN: 1931-1168</identifier><identifier>EISSN: 1947-1629</identifier><identifier>EISBN: 9781479909728</identifier><identifier>EISBN: 1479909726</identifier><identifier>DOI: 10.1109/WASPAA.2013.6701870</identifier><language>eng</language><publisher>IEEE</publisher><subject>Eigenvalues and eigenfunctions ; interferer cancellation ; LCMV ; Noise measurement ; optimal filtering ; Signal to noise ratio ; Speech ; Speech enhancement ; Vectors</subject><ispartof>2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2013, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6701870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6701870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jensen, Jesper Rindom</creatorcontrib><creatorcontrib>Benesty, Jacob</creatorcontrib><creatorcontrib>Christensen, Mads Grosboll</creatorcontrib><creatorcontrib>Jingdong Chen</creatorcontrib><title>An LCMV filter for single-channel noise cancellation and reduction in the time domain</title><title>2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics</title><addtitle>WASPAA</addtitle><description>In this paper, we consider a recent class of optimal rectangular filtering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Interestingly, these filters unify the ideas of optimal filtering and subspace methods. We propose an optimal LCMV filter in this framework with minimum output power that passes the desired signal undistorted and cancels correlated noise. The cancellation was not facilitated by the filters derived so far in this framework. The results show that the proposed filter can achieve output SNRs similar to that of competing filter designs, while having a much higher output signal-to-interference ratio. This is showed for both synthetic and real speech signals.</description><subject>Eigenvalues and eigenfunctions</subject><subject>interferer cancellation</subject><subject>LCMV</subject><subject>Noise measurement</subject><subject>optimal filtering</subject><subject>Signal to noise ratio</subject><subject>Speech</subject><subject>Speech enhancement</subject><subject>Vectors</subject><issn>1931-1168</issn><issn>1947-1629</issn><isbn>9781479909728</isbn><isbn>1479909726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0CiVL6Bd34B1x8bcePZRTxkoJAgsKycuwbapQ4KAkL_p5XVzNnM9IZQtbANwDcXb6WT49luREc5EYbDtbwI7JyxoIyznFnhD0mC3DKMNDCnfx2CQxA2zNyPk3vnBfCKr4g2zLTurp_oW3qZhxpO4x0SvmtQxb2PmfsaB7ShDT4HLDr_JyGTH2OdMT4Gf4oZTrvkc6pRxqH3qd8QU5b3024OuSSbK-vnqtbVj_c3FVlzZIQfGZK-2ga6aJvdNCFAhu1KjAWP47Y2hAaG612stGahxCsE1aDROd92xhljFyS9f9uQsTdx5h6P37tDo_Ib8E8U04</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jensen, Jesper Rindom</creator><creator>Benesty, Jacob</creator><creator>Christensen, Mads Grosboll</creator><creator>Jingdong Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20130101</creationdate><title>An LCMV filter for single-channel noise cancellation and reduction in the time domain</title><author>Jensen, Jesper Rindom ; Benesty, Jacob ; Christensen, Mads Grosboll ; Jingdong Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-46ad7b39dab6c65418d645ed5109ef8ccb8d8693b660ccc8928613e9aafb74773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Eigenvalues and eigenfunctions</topic><topic>interferer cancellation</topic><topic>LCMV</topic><topic>Noise measurement</topic><topic>optimal filtering</topic><topic>Signal to noise ratio</topic><topic>Speech</topic><topic>Speech enhancement</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Jensen, Jesper Rindom</creatorcontrib><creatorcontrib>Benesty, Jacob</creatorcontrib><creatorcontrib>Christensen, Mads Grosboll</creatorcontrib><creatorcontrib>Jingdong Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, Jesper Rindom</au><au>Benesty, Jacob</au><au>Christensen, Mads Grosboll</au><au>Jingdong Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An LCMV filter for single-channel noise cancellation and reduction in the time domain</atitle><btitle>2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics</btitle><stitle>WASPAA</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1931-1168</issn><eissn>1947-1629</eissn><eisbn>9781479909728</eisbn><eisbn>1479909726</eisbn><abstract>In this paper, we consider a recent class of optimal rectangular filtering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Interestingly, these filters unify the ideas of optimal filtering and subspace methods. We propose an optimal LCMV filter in this framework with minimum output power that passes the desired signal undistorted and cancels correlated noise. The cancellation was not facilitated by the filters derived so far in this framework. The results show that the proposed filter can achieve output SNRs similar to that of competing filter designs, while having a much higher output signal-to-interference ratio. This is showed for both synthetic and real speech signals.</abstract><pub>IEEE</pub><doi>10.1109/WASPAA.2013.6701870</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-1168
ispartof 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2013, p.1-4
issn 1931-1168
1947-1629
language eng
recordid cdi_ieee_primary_6701870
source IEEE Xplore All Conference Series
subjects Eigenvalues and eigenfunctions
interferer cancellation
LCMV
Noise measurement
optimal filtering
Signal to noise ratio
Speech
Speech enhancement
Vectors
title An LCMV filter for single-channel noise cancellation and reduction in the time domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20LCMV%20filter%20for%20single-channel%20noise%20cancellation%20and%20reduction%20in%20the%20time%20domain&rft.btitle=2013%20IEEE%20Workshop%20on%20Applications%20of%20Signal%20Processing%20to%20Audio%20and%20Acoustics&rft.au=Jensen,%20Jesper%20Rindom&rft.date=2013-01-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1931-1168&rft.eissn=1947-1629&rft_id=info:doi/10.1109/WASPAA.2013.6701870&rft.eisbn=9781479909728&rft.eisbn_list=1479909726&rft_dat=%3Cieee_CHZPO%3E6701870%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i220t-46ad7b39dab6c65418d645ed5109ef8ccb8d8693b660ccc8928613e9aafb74773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6701870&rfr_iscdi=true