Loading…

Pulmonary CT image classification using evolutionary programming

The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived fr...

Full description

Saved in:
Bibliographic Details
Main Authors: Madsen, M.T., Uppaluri, R., Hoffman, E.A., McLennan, G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1182 vol.2
container_issue
container_start_page 1179
container_title
container_volume 2
creator Madsen, M.T.
Uppaluri, R.
Hoffman, E.A.
McLennan, G.
description The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.
doi_str_mv 10.1109/NSSMIC.1997.670520
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_670520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>670520</ieee_id><sourcerecordid>670520</sourcerecordid><originalsourceid>FETCH-ieee_primary_6705203</originalsourceid><addsrcrecordid>eNp9jssKwjAURC8-wKr9ga7yA603TdO0O6EoulCEdl-CxBLpi8QK_r0VXbsaZs4wDIBHMaAU0805z0_HLKBpKoJYIA9xAk7IhfAxCdMpLFEkyKKQJ3wGDh1Dn8U8WoBr7R0RqYiZYOjA9jLUTddK8yJZQXQjK0WutbRW3_RVPnTXksHqtiLq2dXDx3-qvekqI5tmBGuY32RtlfvTFXj7XZEdfK2UKnszTppX-f3I_sI3HnA9bA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pulmonary CT image classification using evolutionary programming</title><source>IEEE Xplore All Conference Series</source><creator>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</creator><creatorcontrib>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</creatorcontrib><description>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 0780342585</identifier><identifier>ISBN: 9780780342583</identifier><identifier>EISSN: 2577-0829</identifier><identifier>DOI: 10.1109/NSSMIC.1997.670520</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; Fractals ; Genetic algorithms ; Genetic programming ; Histograms ; Image analysis ; Image classification ; Length measurement ; Lungs ; Training data</subject><ispartof>1997 IEEE Nuclear Science Symposium Conference Record, 1997, Vol.2, p.1179-1182 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/670520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4040,4041,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/670520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Madsen, M.T.</creatorcontrib><creatorcontrib>Uppaluri, R.</creatorcontrib><creatorcontrib>Hoffman, E.A.</creatorcontrib><creatorcontrib>McLennan, G.</creatorcontrib><title>Pulmonary CT image classification using evolutionary programming</title><title>1997 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</description><subject>Computed tomography</subject><subject>Fractals</subject><subject>Genetic algorithms</subject><subject>Genetic programming</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Length measurement</subject><subject>Lungs</subject><subject>Training data</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>0780342585</isbn><isbn>9780780342583</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jssKwjAURC8-wKr9ga7yA603TdO0O6EoulCEdl-CxBLpi8QK_r0VXbsaZs4wDIBHMaAU0805z0_HLKBpKoJYIA9xAk7IhfAxCdMpLFEkyKKQJ3wGDh1Dn8U8WoBr7R0RqYiZYOjA9jLUTddK8yJZQXQjK0WutbRW3_RVPnTXksHqtiLq2dXDx3-qvekqI5tmBGuY32RtlfvTFXj7XZEdfK2UKnszTppX-f3I_sI3HnA9bA</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Madsen, M.T.</creator><creator>Uppaluri, R.</creator><creator>Hoffman, E.A.</creator><creator>McLennan, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Pulmonary CT image classification using evolutionary programming</title><author>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6705203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computed tomography</topic><topic>Fractals</topic><topic>Genetic algorithms</topic><topic>Genetic programming</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Length measurement</topic><topic>Lungs</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Madsen, M.T.</creatorcontrib><creatorcontrib>Uppaluri, R.</creatorcontrib><creatorcontrib>Hoffman, E.A.</creatorcontrib><creatorcontrib>McLennan, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madsen, M.T.</au><au>Uppaluri, R.</au><au>Hoffman, E.A.</au><au>McLennan, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pulmonary CT image classification using evolutionary programming</atitle><btitle>1997 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>1179</spage><epage>1182 vol.2</epage><pages>1179-1182 vol.2</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>0780342585</isbn><isbn>9780780342583</isbn><abstract>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.1997.670520</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1082-3654
ispartof 1997 IEEE Nuclear Science Symposium Conference Record, 1997, Vol.2, p.1179-1182 vol.2
issn 1082-3654
2577-0829
language eng
recordid cdi_ieee_primary_670520
source IEEE Xplore All Conference Series
subjects Computed tomography
Fractals
Genetic algorithms
Genetic programming
Histograms
Image analysis
Image classification
Length measurement
Lungs
Training data
title Pulmonary CT image classification using evolutionary programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pulmonary%20CT%20image%20classification%20using%20evolutionary%20programming&rft.btitle=1997%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Madsen,%20M.T.&rft.date=1997&rft.volume=2&rft.spage=1179&rft.epage=1182%20vol.2&rft.pages=1179-1182%20vol.2&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=0780342585&rft.isbn_list=9780780342583&rft_id=info:doi/10.1109/NSSMIC.1997.670520&rft_dat=%3Cieee_CHZPO%3E670520%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_6705203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=670520&rfr_iscdi=true