Loading…
Pulmonary CT image classification using evolutionary programming
The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived fr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1182 vol.2 |
container_issue | |
container_start_page | 1179 |
container_title | |
container_volume | 2 |
creator | Madsen, M.T. Uppaluri, R. Hoffman, E.A. McLennan, G. |
description | The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms. |
doi_str_mv | 10.1109/NSSMIC.1997.670520 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_670520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>670520</ieee_id><sourcerecordid>670520</sourcerecordid><originalsourceid>FETCH-ieee_primary_6705203</originalsourceid><addsrcrecordid>eNp9jssKwjAURC8-wKr9ga7yA603TdO0O6EoulCEdl-CxBLpi8QK_r0VXbsaZs4wDIBHMaAU0805z0_HLKBpKoJYIA9xAk7IhfAxCdMpLFEkyKKQJ3wGDh1Dn8U8WoBr7R0RqYiZYOjA9jLUTddK8yJZQXQjK0WutbRW3_RVPnTXksHqtiLq2dXDx3-qvekqI5tmBGuY32RtlfvTFXj7XZEdfK2UKnszTppX-f3I_sI3HnA9bA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Pulmonary CT image classification using evolutionary programming</title><source>IEEE Xplore All Conference Series</source><creator>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</creator><creatorcontrib>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</creatorcontrib><description>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</description><identifier>ISSN: 1082-3654</identifier><identifier>ISBN: 0780342585</identifier><identifier>ISBN: 9780780342583</identifier><identifier>EISSN: 2577-0829</identifier><identifier>DOI: 10.1109/NSSMIC.1997.670520</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; Fractals ; Genetic algorithms ; Genetic programming ; Histograms ; Image analysis ; Image classification ; Length measurement ; Lungs ; Training data</subject><ispartof>1997 IEEE Nuclear Science Symposium Conference Record, 1997, Vol.2, p.1179-1182 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/670520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4040,4041,27916,54546,54911,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/670520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Madsen, M.T.</creatorcontrib><creatorcontrib>Uppaluri, R.</creatorcontrib><creatorcontrib>Hoffman, E.A.</creatorcontrib><creatorcontrib>McLennan, G.</creatorcontrib><title>Pulmonary CT image classification using evolutionary programming</title><title>1997 IEEE Nuclear Science Symposium Conference Record</title><addtitle>NSSMIC</addtitle><description>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</description><subject>Computed tomography</subject><subject>Fractals</subject><subject>Genetic algorithms</subject><subject>Genetic programming</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Length measurement</subject><subject>Lungs</subject><subject>Training data</subject><issn>1082-3654</issn><issn>2577-0829</issn><isbn>0780342585</isbn><isbn>9780780342583</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jssKwjAURC8-wKr9ga7yA603TdO0O6EoulCEdl-CxBLpi8QK_r0VXbsaZs4wDIBHMaAU0805z0_HLKBpKoJYIA9xAk7IhfAxCdMpLFEkyKKQJ3wGDh1Dn8U8WoBr7R0RqYiZYOjA9jLUTddK8yJZQXQjK0WutbRW3_RVPnTXksHqtiLq2dXDx3-qvekqI5tmBGuY32RtlfvTFXj7XZEdfK2UKnszTppX-f3I_sI3HnA9bA</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Madsen, M.T.</creator><creator>Uppaluri, R.</creator><creator>Hoffman, E.A.</creator><creator>McLennan, G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Pulmonary CT image classification using evolutionary programming</title><author>Madsen, M.T. ; Uppaluri, R. ; Hoffman, E.A. ; McLennan, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6705203</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computed tomography</topic><topic>Fractals</topic><topic>Genetic algorithms</topic><topic>Genetic programming</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Length measurement</topic><topic>Lungs</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Madsen, M.T.</creatorcontrib><creatorcontrib>Uppaluri, R.</creatorcontrib><creatorcontrib>Hoffman, E.A.</creatorcontrib><creatorcontrib>McLennan, G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Madsen, M.T.</au><au>Uppaluri, R.</au><au>Hoffman, E.A.</au><au>McLennan, G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Pulmonary CT image classification using evolutionary programming</atitle><btitle>1997 IEEE Nuclear Science Symposium Conference Record</btitle><stitle>NSSMIC</stitle><date>1997</date><risdate>1997</risdate><volume>2</volume><spage>1179</spage><epage>1182 vol.2</epage><pages>1179-1182 vol.2</pages><issn>1082-3654</issn><eissn>2577-0829</eissn><isbn>0780342585</isbn><isbn>9780780342583</isbn><abstract>The authors report on the use of evolutionary programming for classifying lung CT images. Evolutionary programming uses a genetic algorithm to generate a complete, compilable program that optimizes a solution to set of training data, In this case, the training set consisted of 17 features derived from multiple lung CT images along with an indicator of the target area from which the features originated. The image features included 5 parameters based on histogram analysis, 11 parameters based on run length and co-occurrence matrix measures, and the fractal dimension. Evolutionary programming produced solutions that compared favorably with more complicated and sophisticated Bayesian classifiers. The results of this study suggest that evolutionary programming is a powerful tool for developing classification algorithms.</abstract><pub>IEEE</pub><doi>10.1109/NSSMIC.1997.670520</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1082-3654 |
ispartof | 1997 IEEE Nuclear Science Symposium Conference Record, 1997, Vol.2, p.1179-1182 vol.2 |
issn | 1082-3654 2577-0829 |
language | eng |
recordid | cdi_ieee_primary_670520 |
source | IEEE Xplore All Conference Series |
subjects | Computed tomography Fractals Genetic algorithms Genetic programming Histograms Image analysis Image classification Length measurement Lungs Training data |
title | Pulmonary CT image classification using evolutionary programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A47%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Pulmonary%20CT%20image%20classification%20using%20evolutionary%20programming&rft.btitle=1997%20IEEE%20Nuclear%20Science%20Symposium%20Conference%20Record&rft.au=Madsen,%20M.T.&rft.date=1997&rft.volume=2&rft.spage=1179&rft.epage=1182%20vol.2&rft.pages=1179-1182%20vol.2&rft.issn=1082-3654&rft.eissn=2577-0829&rft.isbn=0780342585&rft.isbn_list=9780780342583&rft_id=info:doi/10.1109/NSSMIC.1997.670520&rft_dat=%3Cieee_CHZPO%3E670520%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_6705203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=670520&rfr_iscdi=true |