Loading…

Development of a semi-automated segmentation framework for thoracic-abdominal organs

Due to the increasing amount of data available from medical imaging procedures and also the increase in computing power, there has been a rise in the automation of the analysis of such data. A crucial step in the automation of such procedures is accurate segmentation of anatomy. Popular approaches i...

Full description

Saved in:
Bibliographic Details
Main Authors: Rahni, Ashrani Aizzuddin Abd, Lewis, Emma, Wells, Kevin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 236
container_issue
container_start_page 232
container_title
container_volume
creator Rahni, Ashrani Aizzuddin Abd
Lewis, Emma
Wells, Kevin
description Due to the increasing amount of data available from medical imaging procedures and also the increase in computing power, there has been a rise in the automation of the analysis of such data. A crucial step in the automation of such procedures is accurate segmentation of anatomy. Popular approaches include model based segmentation. However, these approaches require an atlas which may not be generic enough. This paper proposes a semi-automated data-driven segmentation framework of thoracic CT scans. The preliminary results of the framework is presented and discussed with proposals for future work.
doi_str_mv 10.1109/ICSIPA.2013.6708009
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6708009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6708009</ieee_id><sourcerecordid>6708009</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f1930ef78b8a3cdb1be9aab95bc400b6a3059ef9dfe43edef8611b9f65f5d10d3</originalsourceid><addsrcrecordid>eNotj81Kw0AURseFoNY-QTfzAon3ZvI3yxL_AgUF67rcydypo0mmTKLi22uxq4_DgQOfECuEFBH0Tdu8tM_rNANUaVlBDaDPxBXmldaQlRovxHKa3gEAqwpryC7F9pa_uA-HgcdZBidJTjz4hD7nMNDM9g_3R0ezD6N0kQb-DvFDuhDl_BYidb5LyNgw-JF6GeKexulanDvqJ16ediFe7--2zWOyeXpom_Um8VgVc-JQK2BX1aYm1VmDhjWR0YXpcgBTkoJCs9PWca7YsqtLRKNdWbjCIli1EKv_rmfm3SH6geLP7nRc_QJEv1Gt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of a semi-automated segmentation framework for thoracic-abdominal organs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rahni, Ashrani Aizzuddin Abd ; Lewis, Emma ; Wells, Kevin</creator><creatorcontrib>Rahni, Ashrani Aizzuddin Abd ; Lewis, Emma ; Wells, Kevin</creatorcontrib><description>Due to the increasing amount of data available from medical imaging procedures and also the increase in computing power, there has been a rise in the automation of the analysis of such data. A crucial step in the automation of such procedures is accurate segmentation of anatomy. Popular approaches include model based segmentation. However, these approaches require an atlas which may not be generic enough. This paper proposes a semi-automated data-driven segmentation framework of thoracic CT scans. The preliminary results of the framework is presented and discussed with proposals for future work.</description><identifier>EISBN: 1479902691</identifier><identifier>EISBN: 9781479902699</identifier><identifier>EISBN: 1479902675</identifier><identifier>EISBN: 9781479902675</identifier><identifier>DOI: 10.1109/ICSIPA.2013.6708009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Computed tomography ; Image segmentation ; Liver ; Lungs ; Three-dimensional displays</subject><ispartof>2013 IEEE International Conference on Signal and Image Processing Applications, 2013, p.232-236</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6708009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6708009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahni, Ashrani Aizzuddin Abd</creatorcontrib><creatorcontrib>Lewis, Emma</creatorcontrib><creatorcontrib>Wells, Kevin</creatorcontrib><title>Development of a semi-automated segmentation framework for thoracic-abdominal organs</title><title>2013 IEEE International Conference on Signal and Image Processing Applications</title><addtitle>ICSIPA</addtitle><description>Due to the increasing amount of data available from medical imaging procedures and also the increase in computing power, there has been a rise in the automation of the analysis of such data. A crucial step in the automation of such procedures is accurate segmentation of anatomy. Popular approaches include model based segmentation. However, these approaches require an atlas which may not be generic enough. This paper proposes a semi-automated data-driven segmentation framework of thoracic CT scans. The preliminary results of the framework is presented and discussed with proposals for future work.</description><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>Lungs</subject><subject>Three-dimensional displays</subject><isbn>1479902691</isbn><isbn>9781479902699</isbn><isbn>1479902675</isbn><isbn>9781479902675</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURseFoNY-QTfzAon3ZvI3yxL_AgUF67rcydypo0mmTKLi22uxq4_DgQOfECuEFBH0Tdu8tM_rNANUaVlBDaDPxBXmldaQlRovxHKa3gEAqwpryC7F9pa_uA-HgcdZBidJTjz4hD7nMNDM9g_3R0ezD6N0kQb-DvFDuhDl_BYidb5LyNgw-JF6GeKexulanDvqJ16ediFe7--2zWOyeXpom_Um8VgVc-JQK2BX1aYm1VmDhjWR0YXpcgBTkoJCs9PWca7YsqtLRKNdWbjCIli1EKv_rmfm3SH6geLP7nRc_QJEv1Gt</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Rahni, Ashrani Aizzuddin Abd</creator><creator>Lewis, Emma</creator><creator>Wells, Kevin</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201310</creationdate><title>Development of a semi-automated segmentation framework for thoracic-abdominal organs</title><author>Rahni, Ashrani Aizzuddin Abd ; Lewis, Emma ; Wells, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f1930ef78b8a3cdb1be9aab95bc400b6a3059ef9dfe43edef8611b9f65f5d10d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>Lungs</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahni, Ashrani Aizzuddin Abd</creatorcontrib><creatorcontrib>Lewis, Emma</creatorcontrib><creatorcontrib>Wells, Kevin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahni, Ashrani Aizzuddin Abd</au><au>Lewis, Emma</au><au>Wells, Kevin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of a semi-automated segmentation framework for thoracic-abdominal organs</atitle><btitle>2013 IEEE International Conference on Signal and Image Processing Applications</btitle><stitle>ICSIPA</stitle><date>2013-10</date><risdate>2013</risdate><spage>232</spage><epage>236</epage><pages>232-236</pages><eisbn>1479902691</eisbn><eisbn>9781479902699</eisbn><eisbn>1479902675</eisbn><eisbn>9781479902675</eisbn><abstract>Due to the increasing amount of data available from medical imaging procedures and also the increase in computing power, there has been a rise in the automation of the analysis of such data. A crucial step in the automation of such procedures is accurate segmentation of anatomy. Popular approaches include model based segmentation. However, these approaches require an atlas which may not be generic enough. This paper proposes a semi-automated data-driven segmentation framework of thoracic CT scans. The preliminary results of the framework is presented and discussed with proposals for future work.</abstract><pub>IEEE</pub><doi>10.1109/ICSIPA.2013.6708009</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 1479902691
ispartof 2013 IEEE International Conference on Signal and Image Processing Applications, 2013, p.232-236
issn
language eng
recordid cdi_ieee_primary_6708009
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical imaging
Computed tomography
Image segmentation
Liver
Lungs
Three-dimensional displays
title Development of a semi-automated segmentation framework for thoracic-abdominal organs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20a%20semi-automated%20segmentation%20framework%20for%20thoracic-abdominal%20organs&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Signal%20and%20Image%20Processing%20Applications&rft.au=Rahni,%20Ashrani%20Aizzuddin%20Abd&rft.date=2013-10&rft.spage=232&rft.epage=236&rft.pages=232-236&rft_id=info:doi/10.1109/ICSIPA.2013.6708009&rft.eisbn=1479902691&rft.eisbn_list=9781479902699&rft.eisbn_list=1479902675&rft.eisbn_list=9781479902675&rft_dat=%3Cieee_6IE%3E6708009%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-f1930ef78b8a3cdb1be9aab95bc400b6a3059ef9dfe43edef8611b9f65f5d10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6708009&rfr_iscdi=true