Loading…
An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification
The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves bett...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1905 |
container_issue | |
container_start_page | 1901 |
container_title | |
container_volume | |
creator | Piccoli, Hanna C. B. Silla, Carlos N. De Leon, Pedro J. Ponce Pertusa, Antonio |
description | The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves better classification accuracy than using any of the individual feature sets. Furthermore, when compared with some of the state of the art approaches using the same experimental conditions, early fusion of symbolic features is ranked the second best method. |
doi_str_mv | 10.1109/SMC.2013.327 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6722080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6722080</ieee_id><sourcerecordid>6722080</sourcerecordid><originalsourceid>FETCH-LOGICAL-i213t-339ce1d85431a48aa8b515c93a1e8fac0227d8af78fff7149e344e22b6f05cad3</originalsourceid><addsrcrecordid>eNotzEFLwzAYxvEoCm7Tmzcv-QKded8kTXIcZZvChodNEDyMt22Cka6VphP27Tecp-fw__Ew9ghiCiDc82ZdTFGAnEo0V2wMyjgnco14zUaojckg1_qGjUDkmDnEjzs2TulbCBQK7Ih9zlo-_6XmQEPsWt4Fvjnuy66JFV94Gg695xs_JE5tzbdfPva86PZlbC88dD1fH9IZL317pkVDKcUQq798z24DNck__O-EvS_m2-IlW70tX4vZKosIcsikdJWH2molgZQlsqUGXTlJ4G2gSiCa2lIwNoRgQDkvlfKIZR6ErqiWE_Z0-Y3e-91PH_fUH3e5QRRWyBNfEVNl</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification</title><source>IEEE Xplore All Conference Series</source><creator>Piccoli, Hanna C. B. ; Silla, Carlos N. ; De Leon, Pedro J. Ponce ; Pertusa, Antonio</creator><creatorcontrib>Piccoli, Hanna C. B. ; Silla, Carlos N. ; De Leon, Pedro J. Ponce ; Pertusa, Antonio</creatorcontrib><description>The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves better classification accuracy than using any of the individual feature sets. Furthermore, when compared with some of the state of the art approaches using the same experimental conditions, early fusion of symbolic features is ranked the second best method.</description><identifier>ISSN: 1062-922X</identifier><identifier>EISSN: 2577-1655</identifier><identifier>EISBN: 1479906522</identifier><identifier>EISBN: 9781479906529</identifier><identifier>DOI: 10.1109/SMC.2013.327</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Cultural differences ; Feature extraction ; Multiple signal classification ; Music ; Music information retrieval</subject><ispartof>2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.1901-1905</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6722080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6722080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Piccoli, Hanna C. B.</creatorcontrib><creatorcontrib>Silla, Carlos N.</creatorcontrib><creatorcontrib>De Leon, Pedro J. Ponce</creatorcontrib><creatorcontrib>Pertusa, Antonio</creatorcontrib><title>An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification</title><title>2013 IEEE International Conference on Systems, Man, and Cybernetics</title><addtitle>smc</addtitle><description>The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves better classification accuracy than using any of the individual feature sets. Furthermore, when compared with some of the state of the art approaches using the same experimental conditions, early fusion of symbolic features is ranked the second best method.</description><subject>Accuracy</subject><subject>Cultural differences</subject><subject>Feature extraction</subject><subject>Multiple signal classification</subject><subject>Music</subject><subject>Music information retrieval</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>1479906522</isbn><isbn>9781479906529</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzEFLwzAYxvEoCm7Tmzcv-QKded8kTXIcZZvChodNEDyMt22Cka6VphP27Tecp-fw__Ew9ghiCiDc82ZdTFGAnEo0V2wMyjgnco14zUaojckg1_qGjUDkmDnEjzs2TulbCBQK7Ih9zlo-_6XmQEPsWt4Fvjnuy66JFV94Gg695xs_JE5tzbdfPva86PZlbC88dD1fH9IZL317pkVDKcUQq798z24DNck__O-EvS_m2-IlW70tX4vZKosIcsikdJWH2molgZQlsqUGXTlJ4G2gSiCa2lIwNoRgQDkvlfKIZR6ErqiWE_Z0-Y3e-91PH_fUH3e5QRRWyBNfEVNl</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Piccoli, Hanna C. B.</creator><creator>Silla, Carlos N.</creator><creator>De Leon, Pedro J. Ponce</creator><creator>Pertusa, Antonio</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20130101</creationdate><title>An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification</title><author>Piccoli, Hanna C. B. ; Silla, Carlos N. ; De Leon, Pedro J. Ponce ; Pertusa, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i213t-339ce1d85431a48aa8b515c93a1e8fac0227d8af78fff7149e344e22b6f05cad3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Cultural differences</topic><topic>Feature extraction</topic><topic>Multiple signal classification</topic><topic>Music</topic><topic>Music information retrieval</topic><toplevel>online_resources</toplevel><creatorcontrib>Piccoli, Hanna C. B.</creatorcontrib><creatorcontrib>Silla, Carlos N.</creatorcontrib><creatorcontrib>De Leon, Pedro J. Ponce</creatorcontrib><creatorcontrib>Pertusa, Antonio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Piccoli, Hanna C. B.</au><au>Silla, Carlos N.</au><au>De Leon, Pedro J. Ponce</au><au>Pertusa, Antonio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification</atitle><btitle>2013 IEEE International Conference on Systems, Man, and Cybernetics</btitle><stitle>smc</stitle><date>2013-01-01</date><risdate>2013</risdate><spage>1901</spage><epage>1905</epage><pages>1901-1905</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><eisbn>1479906522</eisbn><eisbn>9781479906529</eisbn><coden>IEEPAD</coden><abstract>The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves better classification accuracy than using any of the individual feature sets. Furthermore, when compared with some of the state of the art approaches using the same experimental conditions, early fusion of symbolic features is ranked the second best method.</abstract><pub>IEEE</pub><doi>10.1109/SMC.2013.327</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1062-922X |
ispartof | 2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, p.1901-1905 |
issn | 1062-922X 2577-1655 |
language | eng |
recordid | cdi_ieee_primary_6722080 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Cultural differences Feature extraction Multiple signal classification Music Music information retrieval |
title | An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Evaluation%20of%20Symbolic%20Feature%20Sets%20and%20Their%20Combination%20for%20Music%20Genre%20Classification&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Systems,%20Man,%20and%20Cybernetics&rft.au=Piccoli,%20Hanna%20C.%20B.&rft.date=2013-01-01&rft.spage=1901&rft.epage=1905&rft.pages=1901-1905&rft.issn=1062-922X&rft.eissn=2577-1655&rft.coden=IEEPAD&rft_id=info:doi/10.1109/SMC.2013.327&rft.eisbn=1479906522&rft.eisbn_list=9781479906529&rft_dat=%3Cieee_CHZPO%3E6722080%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i213t-339ce1d85431a48aa8b515c93a1e8fac0227d8af78fff7149e344e22b6f05cad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6722080&rfr_iscdi=true |