Loading…
Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training
In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exp...
Saved in:
Published in: | IEEE transactions on vehicular technology 2014-10, Vol.63 (8), p.3841-3852 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313 |
container_end_page | 3852 |
container_issue | 8 |
container_start_page | 3841 |
container_title | IEEE transactions on vehicular technology |
container_volume | 63 |
creator | Zhang, Shun Gao, Feifei Wang, Honggang Pei, Changxing |
description | In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies. |
doi_str_mv | 10.1109/TVT.2014.2302435 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6722959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6722959</ieee_id><sourcerecordid>1629342192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</originalsourceid><addsrcrecordid>eNpdkMFO3DAQQK2qSN1C70hcLPXSS7Ye21njY7VdYCXKSpDCMfI6EzB1nGAnwP59jRb10MuMZvRmNPMIOQY2B2D6e3VbzTkDOeeCcSnKD2QGWuhCi1J_JDPG4LTQpSw_kc8pPeZSSg0z4n_ugumcpevQuGfXTMbT5YMJAT1dpdF1ZnR9oG0f6SZgcWd29Bp9jlc4vvTxT6J3bnygleuw-DX50Q0eX7EpbqYBo-uGPmFDq2hccOH-iBy0xif88p4Pye-zVbW8KC435-vlj8vCCi7HQilzaqBplWqhKbleMLQgJIp222DLEHPLWoV2K3CLVhqFQuotIigDVoA4JN_2e4fYP02YxrpzyaL3JmA_pRoWXAvJQfOMfv0PfeynGPJ1mQLJS8VYmSm2p2zsU4rY1kN-zsRdDax-019n_fWb_vpdfx452Y84RPyHLxTnutTiL-stgr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614257005</pqid></control><display><type>article</type><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</creator><creatorcontrib>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</creatorcontrib><description>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2014.2302435</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplification ; Channel estimation ; Channels ; Convolution ; Estimates ; Estimation ; Fourier transforms ; Least squares approximations ; Mathematical models ; Mean square errors ; Relay networks ; Relays ; Thermal expansion ; Training ; Vectors</subject><ispartof>IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3841-3852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</citedby><cites>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6722959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Wang, Honggang</creatorcontrib><creatorcontrib>Pei, Changxing</creatorcontrib><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Convolution</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>Least squares approximations</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Relay networks</subject><subject>Relays</subject><subject>Thermal expansion</subject><subject>Training</subject><subject>Vectors</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMFO3DAQQK2qSN1C70hcLPXSS7Ye21njY7VdYCXKSpDCMfI6EzB1nGAnwP59jRb10MuMZvRmNPMIOQY2B2D6e3VbzTkDOeeCcSnKD2QGWuhCi1J_JDPG4LTQpSw_kc8pPeZSSg0z4n_ugumcpevQuGfXTMbT5YMJAT1dpdF1ZnR9oG0f6SZgcWd29Bp9jlc4vvTxT6J3bnygleuw-DX50Q0eX7EpbqYBo-uGPmFDq2hccOH-iBy0xif88p4Pye-zVbW8KC435-vlj8vCCi7HQilzaqBplWqhKbleMLQgJIp222DLEHPLWoV2K3CLVhqFQuotIigDVoA4JN_2e4fYP02YxrpzyaL3JmA_pRoWXAvJQfOMfv0PfeynGPJ1mQLJS8VYmSm2p2zsU4rY1kN-zsRdDax-019n_fWb_vpdfx452Y84RPyHLxTnutTiL-stgr8</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Zhang, Shun</creator><creator>Gao, Feifei</creator><creator>Wang, Honggang</creator><creator>Pei, Changxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201410</creationdate><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><author>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Convolution</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>Least squares approximations</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Relay networks</topic><topic>Relays</topic><topic>Thermal expansion</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Wang, Honggang</creatorcontrib><creatorcontrib>Pei, Changxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shun</au><au>Gao, Feifei</au><au>Wang, Honggang</au><au>Pei, Changxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-10</date><risdate>2014</risdate><volume>63</volume><issue>8</issue><spage>3841</spage><epage>3852</epage><pages>3841-3852</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2014.2302435</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3841-3852 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_ieee_primary_6722959 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Amplification Channel estimation Channels Convolution Estimates Estimation Fourier transforms Least squares approximations Mathematical models Mean square errors Relay networks Relays Thermal expansion Training Vectors |
title | Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Individual%20Channel%20Estimation%20for%20One-Way%20Relay%20Networks%20With%20Time-Multiplexed-Superimposed%20Training&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Zhang,%20Shun&rft.date=2014-10&rft.volume=63&rft.issue=8&rft.spage=3841&rft.epage=3852&rft.pages=3841-3852&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2014.2302435&rft_dat=%3Cproquest_ieee_%3E1629342192%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614257005&rft_id=info:pmid/&rft_ieee_id=6722959&rfr_iscdi=true |