Loading…

Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training

In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2014-10, Vol.63 (8), p.3841-3852
Main Authors: Zhang, Shun, Gao, Feifei, Wang, Honggang, Pei, Changxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313
cites cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313
container_end_page 3852
container_issue 8
container_start_page 3841
container_title IEEE transactions on vehicular technology
container_volume 63
creator Zhang, Shun
Gao, Feifei
Wang, Honggang
Pei, Changxing
description In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.
doi_str_mv 10.1109/TVT.2014.2302435
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6722959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6722959</ieee_id><sourcerecordid>1629342192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</originalsourceid><addsrcrecordid>eNpdkMFO3DAQQK2qSN1C70hcLPXSS7Ye21njY7VdYCXKSpDCMfI6EzB1nGAnwP59jRb10MuMZvRmNPMIOQY2B2D6e3VbzTkDOeeCcSnKD2QGWuhCi1J_JDPG4LTQpSw_kc8pPeZSSg0z4n_ugumcpevQuGfXTMbT5YMJAT1dpdF1ZnR9oG0f6SZgcWd29Bp9jlc4vvTxT6J3bnygleuw-DX50Q0eX7EpbqYBo-uGPmFDq2hccOH-iBy0xif88p4Pye-zVbW8KC435-vlj8vCCi7HQilzaqBplWqhKbleMLQgJIp222DLEHPLWoV2K3CLVhqFQuotIigDVoA4JN_2e4fYP02YxrpzyaL3JmA_pRoWXAvJQfOMfv0PfeynGPJ1mQLJS8VYmSm2p2zsU4rY1kN-zsRdDax-019n_fWb_vpdfx452Y84RPyHLxTnutTiL-stgr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1614257005</pqid></control><display><type>article</type><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</creator><creatorcontrib>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</creatorcontrib><description>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2014.2302435</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplification ; Channel estimation ; Channels ; Convolution ; Estimates ; Estimation ; Fourier transforms ; Least squares approximations ; Mathematical models ; Mean square errors ; Relay networks ; Relays ; Thermal expansion ; Training ; Vectors</subject><ispartof>IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3841-3852</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</citedby><cites>FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6722959$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Wang, Honggang</creatorcontrib><creatorcontrib>Pei, Changxing</creatorcontrib><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Channel estimation</subject><subject>Channels</subject><subject>Convolution</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Fourier transforms</subject><subject>Least squares approximations</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Relay networks</subject><subject>Relays</subject><subject>Thermal expansion</subject><subject>Training</subject><subject>Vectors</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMFO3DAQQK2qSN1C70hcLPXSS7Ye21njY7VdYCXKSpDCMfI6EzB1nGAnwP59jRb10MuMZvRmNPMIOQY2B2D6e3VbzTkDOeeCcSnKD2QGWuhCi1J_JDPG4LTQpSw_kc8pPeZSSg0z4n_ugumcpevQuGfXTMbT5YMJAT1dpdF1ZnR9oG0f6SZgcWd29Bp9jlc4vvTxT6J3bnygleuw-DX50Q0eX7EpbqYBo-uGPmFDq2hccOH-iBy0xif88p4Pye-zVbW8KC435-vlj8vCCi7HQilzaqBplWqhKbleMLQgJIp222DLEHPLWoV2K3CLVhqFQuotIigDVoA4JN_2e4fYP02YxrpzyaL3JmA_pRoWXAvJQfOMfv0PfeynGPJ1mQLJS8VYmSm2p2zsU4rY1kN-zsRdDax-019n_fWb_vpdfx452Y84RPyHLxTnutTiL-stgr8</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Zhang, Shun</creator><creator>Gao, Feifei</creator><creator>Wang, Honggang</creator><creator>Pei, Changxing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201410</creationdate><title>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</title><author>Zhang, Shun ; Gao, Feifei ; Wang, Honggang ; Pei, Changxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Channel estimation</topic><topic>Channels</topic><topic>Convolution</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Fourier transforms</topic><topic>Least squares approximations</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Relay networks</topic><topic>Relays</topic><topic>Thermal expansion</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shun</creatorcontrib><creatorcontrib>Gao, Feifei</creatorcontrib><creatorcontrib>Wang, Honggang</creatorcontrib><creatorcontrib>Pei, Changxing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shun</au><au>Gao, Feifei</au><au>Wang, Honggang</au><au>Pei, Changxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2014-10</date><risdate>2014</risdate><volume>63</volume><issue>8</issue><spage>3841</spage><epage>3852</epage><pages>3841-3852</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>In this paper, we design a time-multiplexed superimposed training (TMST) scheme to estimate the individual channels in amplify-and-forward one-way relay networks (OWRNs) under a doubly selective channel scenario, where the two-phase zero-prefixed block transmission scheme is adopted. The complex-exponential basis expansion model (CE-BEM) is utilized to approximate the channel of each individual hop and results in a coefficient vector with much smaller size, called in-BEM-CV. The channel estimation of the individual channel is then converted into the estimation of in-BEM-CVs. We develop an estimation algorithm with three steps: the standard least squares (LS) estimator, the time domain or the fast Fourier transform (FFT)-based decoupler, and the iterative LS-based refiner. We also optimize the training parameters, including the number, the position, and the power allocation of the pilot clusters by minimizing the estimation mean square error (MSE), and derive one performance lower bound for the proposed algorithm. Finally, numerical results are provided to corroborate the proposed studies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2014.2302435</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2014-10, Vol.63 (8), p.3841-3852
issn 0018-9545
1939-9359
language eng
recordid cdi_ieee_primary_6722959
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Amplification
Channel estimation
Channels
Convolution
Estimates
Estimation
Fourier transforms
Least squares approximations
Mathematical models
Mean square errors
Relay networks
Relays
Thermal expansion
Training
Vectors
title Dynamic Individual Channel Estimation for One-Way Relay Networks With Time-Multiplexed-Superimposed Training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Individual%20Channel%20Estimation%20for%20One-Way%20Relay%20Networks%20With%20Time-Multiplexed-Superimposed%20Training&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Zhang,%20Shun&rft.date=2014-10&rft.volume=63&rft.issue=8&rft.spage=3841&rft.epage=3852&rft.pages=3841-3852&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2014.2302435&rft_dat=%3Cproquest_ieee_%3E1629342192%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-77a8a1df77f1d52960ec134e3fbdef0ee296cc7ecb3ebec4a7e349bee17a1c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1614257005&rft_id=info:pmid/&rft_ieee_id=6722959&rfr_iscdi=true