Loading…

On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach

This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 2014-09, Vol.22 (5), p.2056-2063
Main Authors: Sira-Ramirez, Hebertt, Linares-Flores, Jesus, Garcia-Rodriguez, Carlos, Contreras-Ordaz, Marco Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3
cites cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3
container_end_page 2063
container_issue 5
container_start_page 2056
container_title IEEE transactions on control systems technology
container_volume 22
creator Sira-Ramirez, Hebertt
Linares-Flores, Jesus
Garcia-Rodriguez, Carlos
Contreras-Ordaz, Marco Antonio
description This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.
doi_str_mv 10.1109/TCST.2014.2298238
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6725661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6725661</ieee_id><sourcerecordid>3386483331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgCMEEqXwAxCLJRaWFD9iJ2aLylNqVUSzR056oYlSu9gOUv89LkUdmHz2fXe--6LomuAJIVjeF9NlMaGYJBNKZUZZdhKNCOdZjDPBT0OMBYsFZ-I8unCuw4HkNB1F3UIjvwY0Ndpb0yPT_F7fwW6UBu3RXH1q8Gi50_XaGm0Gh-bGG_uAco3y2rffgB5b5wdbKV0D-oAOwqvRx5b5dmuNqteX0VmjegdXf-c4Kp6fiulrPFu8vE3zWVwzSX2sOE0U4zVjQhFJeZNIlgqWQLUSXIiKcFk1ilaCAktXQtEANyGbJolMMbBxdHdoG379GsD5ctO6Gvo-7BOmL4MVKaQkggT09h_amcHqMFygEkkopmkaKHKgamucs9CUW9tulN2VBJd7-eVefrmXX_7JDzU3h5oWAI68SGnYgLAf2jh_sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549120277</pqid></control><display><type>article</type><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><source>IEEE Xplore (Online service)</source><creator>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</creator><creatorcontrib>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</creatorcontrib><description>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2014.2298238</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active disturbance rejection control (ADRC) ; Angular velocity ; Control systems ; Current measurement ; differentially flatness systems ; Displacement ; Disturbances ; high-gain extended observers ; Matlab ; Motors ; multivariable control ; Observers ; permanent magnet synchronous motor (PMSM) ; Permanent magnets ; Rejection ; robust control ; Robustness ; Synchronous motors ; Torque ; Trajectory</subject><ispartof>IEEE transactions on control systems technology, 2014-09, Vol.22 (5), p.2056-2063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</citedby><cites>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6725661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sira-Ramirez, Hebertt</creatorcontrib><creatorcontrib>Linares-Flores, Jesus</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Carlos</creatorcontrib><creatorcontrib>Contreras-Ordaz, Marco Antonio</creatorcontrib><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</description><subject>Active control</subject><subject>Active disturbance rejection control (ADRC)</subject><subject>Angular velocity</subject><subject>Control systems</subject><subject>Current measurement</subject><subject>differentially flatness systems</subject><subject>Displacement</subject><subject>Disturbances</subject><subject>high-gain extended observers</subject><subject>Matlab</subject><subject>Motors</subject><subject>multivariable control</subject><subject>Observers</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Permanent magnets</subject><subject>Rejection</subject><subject>robust control</subject><subject>Robustness</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>Trajectory</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAQgCMEEqXwAxCLJRaWFD9iJ2aLylNqVUSzR056oYlSu9gOUv89LkUdmHz2fXe--6LomuAJIVjeF9NlMaGYJBNKZUZZdhKNCOdZjDPBT0OMBYsFZ-I8unCuw4HkNB1F3UIjvwY0Ndpb0yPT_F7fwW6UBu3RXH1q8Gi50_XaGm0Gh-bGG_uAco3y2rffgB5b5wdbKV0D-oAOwqvRx5b5dmuNqteX0VmjegdXf-c4Kp6fiulrPFu8vE3zWVwzSX2sOE0U4zVjQhFJeZNIlgqWQLUSXIiKcFk1ilaCAktXQtEANyGbJolMMbBxdHdoG379GsD5ctO6Gvo-7BOmL4MVKaQkggT09h_amcHqMFygEkkopmkaKHKgamucs9CUW9tulN2VBJd7-eVefrmXX_7JDzU3h5oWAI68SGnYgLAf2jh_sA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Sira-Ramirez, Hebertt</creator><creator>Linares-Flores, Jesus</creator><creator>Garcia-Rodriguez, Carlos</creator><creator>Contreras-Ordaz, Marco Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope></search><sort><creationdate>20140901</creationdate><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><author>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active control</topic><topic>Active disturbance rejection control (ADRC)</topic><topic>Angular velocity</topic><topic>Control systems</topic><topic>Current measurement</topic><topic>differentially flatness systems</topic><topic>Displacement</topic><topic>Disturbances</topic><topic>high-gain extended observers</topic><topic>Matlab</topic><topic>Motors</topic><topic>multivariable control</topic><topic>Observers</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Permanent magnets</topic><topic>Rejection</topic><topic>robust control</topic><topic>Robustness</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sira-Ramirez, Hebertt</creatorcontrib><creatorcontrib>Linares-Flores, Jesus</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Carlos</creatorcontrib><creatorcontrib>Contreras-Ordaz, Marco Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sira-Ramirez, Hebertt</au><au>Linares-Flores, Jesus</au><au>Garcia-Rodriguez, Carlos</au><au>Contreras-Ordaz, Marco Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>22</volume><issue>5</issue><spage>2056</spage><epage>2063</epage><pages>2056-2063</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2014.2298238</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2014-09, Vol.22 (5), p.2056-2063
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_6725661
source IEEE Xplore (Online service)
subjects Active control
Active disturbance rejection control (ADRC)
Angular velocity
Control systems
Current measurement
differentially flatness systems
Displacement
Disturbances
high-gain extended observers
Matlab
Motors
multivariable control
Observers
permanent magnet synchronous motor (PMSM)
Permanent magnets
Rejection
robust control
Robustness
Synchronous motors
Torque
Trajectory
title On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Control%20of%20the%20Permanent%20Magnet%20Synchronous%20Motor:%20An%20Active%20Disturbance%20Rejection%20Control%20Approach&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Sira-Ramirez,%20Hebertt&rft.date=2014-09-01&rft.volume=22&rft.issue=5&rft.spage=2056&rft.epage=2063&rft.pages=2056-2063&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2014.2298238&rft_dat=%3Cproquest_ieee_%3E3386483331%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549120277&rft_id=info:pmid/&rft_ieee_id=6725661&rfr_iscdi=true