Loading…
On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach
This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack...
Saved in:
Published in: | IEEE transactions on control systems technology 2014-09, Vol.22 (5), p.2056-2063 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3 |
container_end_page | 2063 |
container_issue | 5 |
container_start_page | 2056 |
container_title | IEEE transactions on control systems technology |
container_volume | 22 |
creator | Sira-Ramirez, Hebertt Linares-Flores, Jesus Garcia-Rodriguez, Carlos Contreras-Ordaz, Marco Antonio |
description | This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package. |
doi_str_mv | 10.1109/TCST.2014.2298238 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6725661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6725661</ieee_id><sourcerecordid>3386483331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</originalsourceid><addsrcrecordid>eNpdkDtPwzAQgCMEEqXwAxCLJRaWFD9iJ2aLylNqVUSzR056oYlSu9gOUv89LkUdmHz2fXe--6LomuAJIVjeF9NlMaGYJBNKZUZZdhKNCOdZjDPBT0OMBYsFZ-I8unCuw4HkNB1F3UIjvwY0Ndpb0yPT_F7fwW6UBu3RXH1q8Gi50_XaGm0Gh-bGG_uAco3y2rffgB5b5wdbKV0D-oAOwqvRx5b5dmuNqteX0VmjegdXf-c4Kp6fiulrPFu8vE3zWVwzSX2sOE0U4zVjQhFJeZNIlgqWQLUSXIiKcFk1ilaCAktXQtEANyGbJolMMbBxdHdoG379GsD5ctO6Gvo-7BOmL4MVKaQkggT09h_amcHqMFygEkkopmkaKHKgamucs9CUW9tulN2VBJd7-eVefrmXX_7JDzU3h5oWAI68SGnYgLAf2jh_sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1549120277</pqid></control><display><type>article</type><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><source>IEEE Xplore (Online service)</source><creator>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</creator><creatorcontrib>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</creatorcontrib><description>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2014.2298238</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; Active disturbance rejection control (ADRC) ; Angular velocity ; Control systems ; Current measurement ; differentially flatness systems ; Displacement ; Disturbances ; high-gain extended observers ; Matlab ; Motors ; multivariable control ; Observers ; permanent magnet synchronous motor (PMSM) ; Permanent magnets ; Rejection ; robust control ; Robustness ; Synchronous motors ; Torque ; Trajectory</subject><ispartof>IEEE transactions on control systems technology, 2014-09, Vol.22 (5), p.2056-2063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</citedby><cites>FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6725661$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sira-Ramirez, Hebertt</creatorcontrib><creatorcontrib>Linares-Flores, Jesus</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Carlos</creatorcontrib><creatorcontrib>Contreras-Ordaz, Marco Antonio</creatorcontrib><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</description><subject>Active control</subject><subject>Active disturbance rejection control (ADRC)</subject><subject>Angular velocity</subject><subject>Control systems</subject><subject>Current measurement</subject><subject>differentially flatness systems</subject><subject>Displacement</subject><subject>Disturbances</subject><subject>high-gain extended observers</subject><subject>Matlab</subject><subject>Motors</subject><subject>multivariable control</subject><subject>Observers</subject><subject>permanent magnet synchronous motor (PMSM)</subject><subject>Permanent magnets</subject><subject>Rejection</subject><subject>robust control</subject><subject>Robustness</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>Trajectory</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkDtPwzAQgCMEEqXwAxCLJRaWFD9iJ2aLylNqVUSzR056oYlSu9gOUv89LkUdmHz2fXe--6LomuAJIVjeF9NlMaGYJBNKZUZZdhKNCOdZjDPBT0OMBYsFZ-I8unCuw4HkNB1F3UIjvwY0Ndpb0yPT_F7fwW6UBu3RXH1q8Gi50_XaGm0Gh-bGG_uAco3y2rffgB5b5wdbKV0D-oAOwqvRx5b5dmuNqteX0VmjegdXf-c4Kp6fiulrPFu8vE3zWVwzSX2sOE0U4zVjQhFJeZNIlgqWQLUSXIiKcFk1ilaCAktXQtEANyGbJolMMbBxdHdoG379GsD5ctO6Gvo-7BOmL4MVKaQkggT09h_amcHqMFygEkkopmkaKHKgamucs9CUW9tulN2VBJd7-eVefrmXX_7JDzU3h5oWAI68SGnYgLAf2jh_sA</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Sira-Ramirez, Hebertt</creator><creator>Linares-Flores, Jesus</creator><creator>Garcia-Rodriguez, Carlos</creator><creator>Contreras-Ordaz, Marco Antonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7U5</scope><scope>F28</scope></search><sort><creationdate>20140901</creationdate><title>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</title><author>Sira-Ramirez, Hebertt ; Linares-Flores, Jesus ; Garcia-Rodriguez, Carlos ; Contreras-Ordaz, Marco Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active control</topic><topic>Active disturbance rejection control (ADRC)</topic><topic>Angular velocity</topic><topic>Control systems</topic><topic>Current measurement</topic><topic>differentially flatness systems</topic><topic>Displacement</topic><topic>Disturbances</topic><topic>high-gain extended observers</topic><topic>Matlab</topic><topic>Motors</topic><topic>multivariable control</topic><topic>Observers</topic><topic>permanent magnet synchronous motor (PMSM)</topic><topic>Permanent magnets</topic><topic>Rejection</topic><topic>robust control</topic><topic>Robustness</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sira-Ramirez, Hebertt</creatorcontrib><creatorcontrib>Linares-Flores, Jesus</creatorcontrib><creatorcontrib>Garcia-Rodriguez, Carlos</creatorcontrib><creatorcontrib>Contreras-Ordaz, Marco Antonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sira-Ramirez, Hebertt</au><au>Linares-Flores, Jesus</au><au>Garcia-Rodriguez, Carlos</au><au>Contreras-Ordaz, Marco Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>22</volume><issue>5</issue><spage>2056</spage><epage>2063</epage><pages>2056-2063</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This brief presents an active disturbance rejection control scheme for the angular velocity trajectory tracking task on a substantially perturbed, uncertain, and permanent magnet synchronous motor. The presence of unknown, time varying, and load-torque inputs, unknown system parameters, and the lack of knowledge of the initial shaft's angular position, prompts a high-gain generalized proportional integral (GPI) observer-based active disturbance rejection (ADR) controller. This controller is synthesized on the basis of the differential flatness of the system and the direct measurability of the system's flat outputs, constituted by the motor's angular displacement and the d-axis current. As a departure from many previous treatments, the d-q-axis currents model is here computed on the basis of the measured displacement and not on the basis of the unknown position. The proposed high-gain GPI observer-based ADR controller is justified in terms of a singular perturbation approach. The validity and robustness of the scheme are verified by means of realistic computer simulations, using the MATLAB/SIMULINK-PSIM package.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2014.2298238</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2014-09, Vol.22 (5), p.2056-2063 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_6725661 |
source | IEEE Xplore (Online service) |
subjects | Active control Active disturbance rejection control (ADRC) Angular velocity Control systems Current measurement differentially flatness systems Displacement Disturbances high-gain extended observers Matlab Motors multivariable control Observers permanent magnet synchronous motor (PMSM) Permanent magnets Rejection robust control Robustness Synchronous motors Torque Trajectory |
title | On the Control of the Permanent Magnet Synchronous Motor: An Active Disturbance Rejection Control Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Control%20of%20the%20Permanent%20Magnet%20Synchronous%20Motor:%20An%20Active%20Disturbance%20Rejection%20Control%20Approach&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Sira-Ramirez,%20Hebertt&rft.date=2014-09-01&rft.volume=22&rft.issue=5&rft.spage=2056&rft.epage=2063&rft.pages=2056-2063&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2014.2298238&rft_dat=%3Cproquest_ieee_%3E3386483331%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-a524a35c336a1925f4937634ebd6566b159bfa2b62e37d6a2a35f4eb744970e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1549120277&rft_id=info:pmid/&rft_ieee_id=6725661&rfr_iscdi=true |