Loading…
Discriminatively Enhanced Topic Models
This paper proposes a space-efficient, discriminatively enhanced topic model: a V structured topic model with an embedded log-linear component. The discriminative log-linear component reduces the number of parameters to be learnt while outperforming baseline generative models. At the same time, the...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 990 |
container_issue | |
container_start_page | 985 |
container_title | |
container_volume | |
creator | Chaturvedi, Snigdha Daume, Hal Moon, Taesun |
description | This paper proposes a space-efficient, discriminatively enhanced topic model: a V structured topic model with an embedded log-linear component. The discriminative log-linear component reduces the number of parameters to be learnt while outperforming baseline generative models. At the same time, the explanatory power of the generative component is not compromised. We establish its superiority over a purely generative model by applying it to two different ranking tasks: (a) In the first task, we look at the problem of proposing alternative citations given textual and bibliographic evidence. We solve it as a ranking problem in itself and as a platform for further qualitative analysis of convergence of scientific phenomenon. (b) In the second task we address the problem of ranking potential email recipients based on email content and sender information. |
doi_str_mv | 10.1109/ICDM.2013.107 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6729586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6729586</ieee_id><sourcerecordid>1669889711</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-7f8d45da529eb2178c61e7d3c4febd90854b1a57841a178ba06888f0112cf6513</originalsourceid><addsrcrecordid>eNotjz1PAkEURUejiYiUVjZUxmbxvfl8UxpAJYHYYL2Z3X0bxyy7uAMm_HswWN3inpzcK8Q9wgQR_PNiOltNJKCaILgLMfKOwFlvDALhpRhI5XRGmuyVGKAxkGlH9kbcpvQNoKxVMBCPs5jKPm5iG3bxl5vDeN5-hbbkarzutrEcr7qKm3QnruvQJB7951B8vs7X0_ds-fG2mL4ssyiBdpmrqdKmCkZ6LiQ6Ki2yq1Spay4qD2R0gcE40hhObRHAElENiLKsrUE1FE9n77bvfvacdvnmtI-bJrTc7VOO1noi7_APfTijkZnz7elD6A-5ddIbsuoIuTJOTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1669889711</pqid></control><display><type>conference_proceeding</type><title>Discriminatively Enhanced Topic Models</title><source>IEEE Xplore All Conference Series</source><creator>Chaturvedi, Snigdha ; Daume, Hal ; Moon, Taesun</creator><creatorcontrib>Chaturvedi, Snigdha ; Daume, Hal ; Moon, Taesun</creatorcontrib><description>This paper proposes a space-efficient, discriminatively enhanced topic model: a V structured topic model with an embedded log-linear component. The discriminative log-linear component reduces the number of parameters to be learnt while outperforming baseline generative models. At the same time, the explanatory power of the generative component is not compromised. We establish its superiority over a purely generative model by applying it to two different ranking tasks: (a) In the first task, we look at the problem of proposing alternative citations given textual and bibliographic evidence. We solve it as a ranking problem in itself and as a platform for further qualitative analysis of convergence of scientific phenomenon. (b) In the second task we address the problem of ranking potential email recipients based on email content and sender information.</description><identifier>ISSN: 1550-4786</identifier><identifier>EISSN: 2374-8486</identifier><identifier>EISBN: 9780769551081</identifier><identifier>EISBN: 0769551084</identifier><identifier>DOI: 10.1109/ICDM.2013.107</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bibliographies ; Conferences ; Context modeling ; Convergence ; Data mining ; Electronic mail ; Email ; Hidden Markov models ; Hybrid power systems ; Log linear models ; Mathematical model ; Platforms ; Predictive models ; Probabilistic ranking ; Ranking ; Tasks ; Text Mining ; Topic Models ; Vectors</subject><ispartof>2013 IEEE 13th International Conference on Data Mining, 2013, p.985-990</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6729586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,27923,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6729586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaturvedi, Snigdha</creatorcontrib><creatorcontrib>Daume, Hal</creatorcontrib><creatorcontrib>Moon, Taesun</creatorcontrib><title>Discriminatively Enhanced Topic Models</title><title>2013 IEEE 13th International Conference on Data Mining</title><addtitle>icdm</addtitle><description>This paper proposes a space-efficient, discriminatively enhanced topic model: a V structured topic model with an embedded log-linear component. The discriminative log-linear component reduces the number of parameters to be learnt while outperforming baseline generative models. At the same time, the explanatory power of the generative component is not compromised. We establish its superiority over a purely generative model by applying it to two different ranking tasks: (a) In the first task, we look at the problem of proposing alternative citations given textual and bibliographic evidence. We solve it as a ranking problem in itself and as a platform for further qualitative analysis of convergence of scientific phenomenon. (b) In the second task we address the problem of ranking potential email recipients based on email content and sender information.</description><subject>Bibliographies</subject><subject>Conferences</subject><subject>Context modeling</subject><subject>Convergence</subject><subject>Data mining</subject><subject>Electronic mail</subject><subject>Email</subject><subject>Hidden Markov models</subject><subject>Hybrid power systems</subject><subject>Log linear models</subject><subject>Mathematical model</subject><subject>Platforms</subject><subject>Predictive models</subject><subject>Probabilistic ranking</subject><subject>Ranking</subject><subject>Tasks</subject><subject>Text Mining</subject><subject>Topic Models</subject><subject>Vectors</subject><issn>1550-4786</issn><issn>2374-8486</issn><isbn>9780769551081</isbn><isbn>0769551084</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjz1PAkEURUejiYiUVjZUxmbxvfl8UxpAJYHYYL2Z3X0bxyy7uAMm_HswWN3inpzcK8Q9wgQR_PNiOltNJKCaILgLMfKOwFlvDALhpRhI5XRGmuyVGKAxkGlH9kbcpvQNoKxVMBCPs5jKPm5iG3bxl5vDeN5-hbbkarzutrEcr7qKm3QnruvQJB7951B8vs7X0_ds-fG2mL4ssyiBdpmrqdKmCkZ6LiQ6Ki2yq1Spay4qD2R0gcE40hhObRHAElENiLKsrUE1FE9n77bvfvacdvnmtI-bJrTc7VOO1noi7_APfTijkZnz7elD6A-5ddIbsuoIuTJOTQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Chaturvedi, Snigdha</creator><creator>Daume, Hal</creator><creator>Moon, Taesun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Discriminatively Enhanced Topic Models</title><author>Chaturvedi, Snigdha ; Daume, Hal ; Moon, Taesun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-7f8d45da529eb2178c61e7d3c4febd90854b1a57841a178ba06888f0112cf6513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bibliographies</topic><topic>Conferences</topic><topic>Context modeling</topic><topic>Convergence</topic><topic>Data mining</topic><topic>Electronic mail</topic><topic>Email</topic><topic>Hidden Markov models</topic><topic>Hybrid power systems</topic><topic>Log linear models</topic><topic>Mathematical model</topic><topic>Platforms</topic><topic>Predictive models</topic><topic>Probabilistic ranking</topic><topic>Ranking</topic><topic>Tasks</topic><topic>Text Mining</topic><topic>Topic Models</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Chaturvedi, Snigdha</creatorcontrib><creatorcontrib>Daume, Hal</creatorcontrib><creatorcontrib>Moon, Taesun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaturvedi, Snigdha</au><au>Daume, Hal</au><au>Moon, Taesun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Discriminatively Enhanced Topic Models</atitle><btitle>2013 IEEE 13th International Conference on Data Mining</btitle><stitle>icdm</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>985</spage><epage>990</epage><pages>985-990</pages><issn>1550-4786</issn><eissn>2374-8486</eissn><eisbn>9780769551081</eisbn><eisbn>0769551084</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a space-efficient, discriminatively enhanced topic model: a V structured topic model with an embedded log-linear component. The discriminative log-linear component reduces the number of parameters to be learnt while outperforming baseline generative models. At the same time, the explanatory power of the generative component is not compromised. We establish its superiority over a purely generative model by applying it to two different ranking tasks: (a) In the first task, we look at the problem of proposing alternative citations given textual and bibliographic evidence. We solve it as a ranking problem in itself and as a platform for further qualitative analysis of convergence of scientific phenomenon. (b) In the second task we address the problem of ranking potential email recipients based on email content and sender information.</abstract><pub>IEEE</pub><doi>10.1109/ICDM.2013.107</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-4786 |
ispartof | 2013 IEEE 13th International Conference on Data Mining, 2013, p.985-990 |
issn | 1550-4786 2374-8486 |
language | eng |
recordid | cdi_ieee_primary_6729586 |
source | IEEE Xplore All Conference Series |
subjects | Bibliographies Conferences Context modeling Convergence Data mining Electronic mail Hidden Markov models Hybrid power systems Log linear models Mathematical model Platforms Predictive models Probabilistic ranking Ranking Tasks Text Mining Topic Models Vectors |
title | Discriminatively Enhanced Topic Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Discriminatively%20Enhanced%20Topic%20Models&rft.btitle=2013%20IEEE%2013th%20International%20Conference%20on%20Data%20Mining&rft.au=Chaturvedi,%20Snigdha&rft.date=2013-12-01&rft.spage=985&rft.epage=990&rft.pages=985-990&rft.issn=1550-4786&rft.eissn=2374-8486&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDM.2013.107&rft.eisbn=9780769551081&rft.eisbn_list=0769551084&rft_dat=%3Cproquest_CHZPO%3E1669889711%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-7f8d45da529eb2178c61e7d3c4febd90854b1a57841a178ba06888f0112cf6513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669889711&rft_id=info:pmid/&rft_ieee_id=6729586&rfr_iscdi=true |