Loading…
Kernel-Based Structural Binary Pattern Tracking
In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized diff...
Saved in:
Published in: | IEEE transactions on circuits and systems for video technology 2014-08, Vol.24 (8), p.1288-1300 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73 |
container_end_page | 1300 |
container_issue | 8 |
container_start_page | 1288 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 24 |
creator | KIM, Dae-Hwan KIM, Hyo-Kak LEE, Seung-Jun PARK, Won-Jae KO, Sung-Jea |
description | In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods. |
doi_str_mv | 10.1109/TCSVT.2014.2305514 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6739132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6739132</ieee_id><sourcerecordid>3395811131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqH9DLgghetp18J0db_MKCQlevIc1mZet2W5Pdg__e1JYePGUgzwwzL0KXGEYYgx4X0_lHMSKA2YhQ4ByzIzTAnKucEODHqQaOc0UwP0VnMS4hScXkAI1ffGh9k09s9GU270Lvuj7YJpvUrQ0_2ZvtuiSyIlj3Vbef5-iksk30F_t3iN4f7ovpUz57fXye3s1yR7nqcg_Oa-4o8wsLwnEgWDFgmlJWVXTBtdJEK1lhIUvLQQhLbWVLh0tCNLGSDtHtbu4mrL97HzuzqqPzTWNbv-6jwVwAJhIIT_T6H12u-9Cm7ZLiWIGgmiRFdsqFdYzBV2YT6lU60WAw2wzNX4Zmm6HZZ5iabvajbXS2qYJtXR0PnURJJkFAclc7V3vvD99CUo0pob9YOHe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551806392</pqid></control><display><type>article</type><title>Kernel-Based Structural Binary Pattern Tracking</title><source>IEEE Xplore (Online service)</source><creator>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</creator><creatorcontrib>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</creatorcontrib><description>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2014.2305514</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Heuristic ; Histograms ; Illumination change ; Image color analysis ; Information, signal and communications theory ; Kernel ; kernel-based tracking ; Lighting ; local binary pattern ; mean shift ; Object tracking ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; Target tracking ; Telecommunications and information theory ; Transforms ; visual object tracking</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2014-08, Vol.24 (8), p.1288-1300</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</citedby><cites>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6739132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28747060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, Dae-Hwan</creatorcontrib><creatorcontrib>KIM, Hyo-Kak</creatorcontrib><creatorcontrib>LEE, Seung-Jun</creatorcontrib><creatorcontrib>PARK, Won-Jae</creatorcontrib><creatorcontrib>KO, Sung-Jea</creatorcontrib><title>Kernel-Based Structural Binary Pattern Tracking</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Histograms</subject><subject>Illumination change</subject><subject>Image color analysis</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>kernel-based tracking</subject><subject>Lighting</subject><subject>local binary pattern</subject><subject>mean shift</subject><subject>Object tracking</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>visual object tracking</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqH9DLgghetp18J0db_MKCQlevIc1mZet2W5Pdg__e1JYePGUgzwwzL0KXGEYYgx4X0_lHMSKA2YhQ4ByzIzTAnKucEODHqQaOc0UwP0VnMS4hScXkAI1ffGh9k09s9GU270Lvuj7YJpvUrQ0_2ZvtuiSyIlj3Vbef5-iksk30F_t3iN4f7ovpUz57fXye3s1yR7nqcg_Oa-4o8wsLwnEgWDFgmlJWVXTBtdJEK1lhIUvLQQhLbWVLh0tCNLGSDtHtbu4mrL97HzuzqqPzTWNbv-6jwVwAJhIIT_T6H12u-9Cm7ZLiWIGgmiRFdsqFdYzBV2YT6lU60WAw2wzNX4Zmm6HZZ5iabvajbXS2qYJtXR0PnURJJkFAclc7V3vvD99CUo0pob9YOHe7</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>KIM, Dae-Hwan</creator><creator>KIM, Hyo-Kak</creator><creator>LEE, Seung-Jun</creator><creator>PARK, Won-Jae</creator><creator>KO, Sung-Jea</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20140801</creationdate><title>Kernel-Based Structural Binary Pattern Tracking</title><author>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Histograms</topic><topic>Illumination change</topic><topic>Image color analysis</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>kernel-based tracking</topic><topic>Lighting</topic><topic>local binary pattern</topic><topic>mean shift</topic><topic>Object tracking</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>visual object tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Dae-Hwan</creatorcontrib><creatorcontrib>KIM, Hyo-Kak</creatorcontrib><creatorcontrib>LEE, Seung-Jun</creatorcontrib><creatorcontrib>PARK, Won-Jae</creatorcontrib><creatorcontrib>KO, Sung-Jea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Dae-Hwan</au><au>KIM, Hyo-Kak</au><au>LEE, Seung-Jun</au><au>PARK, Won-Jae</au><au>KO, Sung-Jea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Structural Binary Pattern Tracking</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>24</volume><issue>8</issue><spage>1288</spage><epage>1300</epage><pages>1288-1300</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2014.2305514</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2014-08, Vol.24 (8), p.1288-1300 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_6739132 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology Heuristic Histograms Illumination change Image color analysis Information, signal and communications theory Kernel kernel-based tracking Lighting local binary pattern mean shift Object tracking Pattern recognition Signal and communications theory Signal processing Signal, noise Target tracking Telecommunications and information theory Transforms visual object tracking |
title | Kernel-Based Structural Binary Pattern Tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Structural%20Binary%20Pattern%20Tracking&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=KIM,%20Dae-Hwan&rft.date=2014-08-01&rft.volume=24&rft.issue=8&rft.spage=1288&rft.epage=1300&rft.pages=1288-1300&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2014.2305514&rft_dat=%3Cproquest_ieee_%3E3395811131%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551806392&rft_id=info:pmid/&rft_ieee_id=6739132&rfr_iscdi=true |