Loading…

Kernel-Based Structural Binary Pattern Tracking

In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized diff...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology 2014-08, Vol.24 (8), p.1288-1300
Main Authors: KIM, Dae-Hwan, KIM, Hyo-Kak, LEE, Seung-Jun, PARK, Won-Jae, KO, Sung-Jea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73
cites cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73
container_end_page 1300
container_issue 8
container_start_page 1288
container_title IEEE transactions on circuits and systems for video technology
container_volume 24
creator KIM, Dae-Hwan
KIM, Hyo-Kak
LEE, Seung-Jun
PARK, Won-Jae
KO, Sung-Jea
description In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.
doi_str_mv 10.1109/TCSVT.2014.2305514
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6739132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6739132</ieee_id><sourcerecordid>3395811131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqH9DLgghetp18J0db_MKCQlevIc1mZet2W5Pdg__e1JYePGUgzwwzL0KXGEYYgx4X0_lHMSKA2YhQ4ByzIzTAnKucEODHqQaOc0UwP0VnMS4hScXkAI1ffGh9k09s9GU270Lvuj7YJpvUrQ0_2ZvtuiSyIlj3Vbef5-iksk30F_t3iN4f7ovpUz57fXye3s1yR7nqcg_Oa-4o8wsLwnEgWDFgmlJWVXTBtdJEK1lhIUvLQQhLbWVLh0tCNLGSDtHtbu4mrL97HzuzqqPzTWNbv-6jwVwAJhIIT_T6H12u-9Cm7ZLiWIGgmiRFdsqFdYzBV2YT6lU60WAw2wzNX4Zmm6HZZ5iabvajbXS2qYJtXR0PnURJJkFAclc7V3vvD99CUo0pob9YOHe7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551806392</pqid></control><display><type>article</type><title>Kernel-Based Structural Binary Pattern Tracking</title><source>IEEE Xplore (Online service)</source><creator>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</creator><creatorcontrib>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</creatorcontrib><description>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2014.2305514</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Heuristic ; Histograms ; Illumination change ; Image color analysis ; Information, signal and communications theory ; Kernel ; kernel-based tracking ; Lighting ; local binary pattern ; mean shift ; Object tracking ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal, noise ; Target tracking ; Telecommunications and information theory ; Transforms ; visual object tracking</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2014-08, Vol.24 (8), p.1288-1300</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</citedby><cites>FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6739132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28747060$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIM, Dae-Hwan</creatorcontrib><creatorcontrib>KIM, Hyo-Kak</creatorcontrib><creatorcontrib>LEE, Seung-Jun</creatorcontrib><creatorcontrib>PARK, Won-Jae</creatorcontrib><creatorcontrib>KO, Sung-Jea</creatorcontrib><title>Kernel-Based Structural Binary Pattern Tracking</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Histograms</subject><subject>Illumination change</subject><subject>Image color analysis</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>kernel-based tracking</subject><subject>Lighting</subject><subject>local binary pattern</subject><subject>mean shift</subject><subject>Object tracking</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Target tracking</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>visual object tracking</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqH9DLgghetp18J0db_MKCQlevIc1mZet2W5Pdg__e1JYePGUgzwwzL0KXGEYYgx4X0_lHMSKA2YhQ4ByzIzTAnKucEODHqQaOc0UwP0VnMS4hScXkAI1ffGh9k09s9GU270Lvuj7YJpvUrQ0_2ZvtuiSyIlj3Vbef5-iksk30F_t3iN4f7ovpUz57fXye3s1yR7nqcg_Oa-4o8wsLwnEgWDFgmlJWVXTBtdJEK1lhIUvLQQhLbWVLh0tCNLGSDtHtbu4mrL97HzuzqqPzTWNbv-6jwVwAJhIIT_T6H12u-9Cm7ZLiWIGgmiRFdsqFdYzBV2YT6lU60WAw2wzNX4Zmm6HZZ5iabvajbXS2qYJtXR0PnURJJkFAclc7V3vvD99CUo0pob9YOHe7</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>KIM, Dae-Hwan</creator><creator>KIM, Hyo-Kak</creator><creator>LEE, Seung-Jun</creator><creator>PARK, Won-Jae</creator><creator>KO, Sung-Jea</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20140801</creationdate><title>Kernel-Based Structural Binary Pattern Tracking</title><author>KIM, Dae-Hwan ; KIM, Hyo-Kak ; LEE, Seung-Jun ; PARK, Won-Jae ; KO, Sung-Jea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Histograms</topic><topic>Illumination change</topic><topic>Image color analysis</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>kernel-based tracking</topic><topic>Lighting</topic><topic>local binary pattern</topic><topic>mean shift</topic><topic>Object tracking</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Target tracking</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>visual object tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIM, Dae-Hwan</creatorcontrib><creatorcontrib>KIM, Hyo-Kak</creatorcontrib><creatorcontrib>LEE, Seung-Jun</creatorcontrib><creatorcontrib>PARK, Won-Jae</creatorcontrib><creatorcontrib>KO, Sung-Jea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIM, Dae-Hwan</au><au>KIM, Hyo-Kak</au><au>LEE, Seung-Jun</au><au>PARK, Won-Jae</au><au>KO, Sung-Jea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Structural Binary Pattern Tracking</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>24</volume><issue>8</issue><spage>1288</spage><epage>1300</epage><pages>1288-1300</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>In this paper, we propose a new pattern model, called the structural binary pattern (SBP) model, for object tracking. For the proposed SBP model, we introduce an alternate thresholding scheme to generate a set of multiple SBPs. The SBP encodes not only the binary pattern consisting of binarized differences between the average intensities of subregions within the target region, but also the spatial configuration of the subregions. With the proposed SBP model, we define a metric for similarity between the SBP models from the target and candidate for target localization, which is based on an isotropic kernel weighted Hamming distance. To further improve the tracking performance, we employ a color-based tracking method along with the SBP-based tracking method. The experimental results show that the proposed algorithm exhibits the better performance even when the object being tracked confronts drastic illumination changes, partial occlusion, a similar colored background, or low illumination as compared with conventional tracking methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2014.2305514</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2014-08, Vol.24 (8), p.1288-1300
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_6739132
source IEEE Xplore (Online service)
subjects Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Heuristic
Histograms
Illumination change
Image color analysis
Information, signal and communications theory
Kernel
kernel-based tracking
Lighting
local binary pattern
mean shift
Object tracking
Pattern recognition
Signal and communications theory
Signal processing
Signal, noise
Target tracking
Telecommunications and information theory
Transforms
visual object tracking
title Kernel-Based Structural Binary Pattern Tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T01%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Structural%20Binary%20Pattern%20Tracking&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=KIM,%20Dae-Hwan&rft.date=2014-08-01&rft.volume=24&rft.issue=8&rft.spage=1288&rft.epage=1300&rft.pages=1288-1300&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2014.2305514&rft_dat=%3Cproquest_ieee_%3E3395811131%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e0ce95c34eba06c502184049334ff3b59892987f167da5066a3afadc1d2292a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551806392&rft_id=info:pmid/&rft_ieee_id=6739132&rfr_iscdi=true