Loading…
Multi-object tracking based on improved Mean Shift
Since Mean Shift algorithm can not track multiple objects, a full automatic multi-object tracking algorithm based on improved Mean Shift is proposed. The background subtraction image kernel density estimation algorithm is used to detect the foreground. The extracted moving objects are used as candid...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1592 |
container_issue | |
container_start_page | 1588 |
container_title | |
container_volume | |
creator | Meifeng Gao Di Liu |
description | Since Mean Shift algorithm can not track multiple objects, a full automatic multi-object tracking algorithm based on improved Mean Shift is proposed. The background subtraction image kernel density estimation algorithm is used to detect the foreground. The extracted moving objects are used as candidate template to eliminate the influence of background. By adopting object matching based on distance matrix, new objects entering to the scene and occlusion-split between objects could be handled. The tracking accuracy is increased by using shadow removal and morphology processing. The experiment results show that the proposed method can achieve multiple-object tracking accurately, and deal with the occlusion-split between objects very well. |
doi_str_mv | 10.1109/ICIST.2013.6747840 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6747840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6747840</ieee_id><sourcerecordid>6747840</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c41aa81e09fe1edc50cbd6690538307eec92c1faa0e4a92c9104fd3445385613</originalsourceid><addsrcrecordid>eNotj8FKw0AURUesYK39Ad3kBxLfy7yZySwlaA20dNG6LpPJi05tk5JEwb83YFb3XA5cuEI8ICSIYJ-KvNjtkxRQJtqQyQiuxB2SNjI1mvT1VBRKY2ZinqKmmKQyt2LZ90cAkJhlltRcpJvv0xDitjyyH6Khc_4rNB9R6XquoraJwvnStT8jb9g10e4z1MO9uKndqefllAvx_vqyz9_i9XZV5M_rOKBRQ6w9oXMZMtiakSuvwJeV1haUzCQYZm9Tj7VzwORGtAhUV5Jo9EqjXIjH_93AzIdLF86u-z1Mf-Ufpo9GUg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-object tracking based on improved Mean Shift</title><source>IEEE Xplore All Conference Series</source><creator>Meifeng Gao ; Di Liu</creator><creatorcontrib>Meifeng Gao ; Di Liu</creatorcontrib><description>Since Mean Shift algorithm can not track multiple objects, a full automatic multi-object tracking algorithm based on improved Mean Shift is proposed. The background subtraction image kernel density estimation algorithm is used to detect the foreground. The extracted moving objects are used as candidate template to eliminate the influence of background. By adopting object matching based on distance matrix, new objects entering to the scene and occlusion-split between objects could be handled. The tracking accuracy is increased by using shadow removal and morphology processing. The experiment results show that the proposed method can achieve multiple-object tracking accurately, and deal with the occlusion-split between objects very well.</description><identifier>ISSN: 2164-4357</identifier><identifier>ISBN: 1467351377</identifier><identifier>ISBN: 9781467351379</identifier><identifier>EISBN: 1467327646</identifier><identifier>EISBN: 9781467327640</identifier><identifier>EISBN: 1467327638</identifier><identifier>EISBN: 9781467327633</identifier><identifier>DOI: 10.1109/ICIST.2013.6747840</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Histograms ; Image color analysis ; Kernel ; Object tracking ; Target tracking</subject><ispartof>2013 IEEE Third International Conference on Information Science and Technology (ICIST), 2013, p.1588-1592</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6747840$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23928,23929,25138,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6747840$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meifeng Gao</creatorcontrib><creatorcontrib>Di Liu</creatorcontrib><title>Multi-object tracking based on improved Mean Shift</title><title>2013 IEEE Third International Conference on Information Science and Technology (ICIST)</title><addtitle>ICIST</addtitle><description>Since Mean Shift algorithm can not track multiple objects, a full automatic multi-object tracking algorithm based on improved Mean Shift is proposed. The background subtraction image kernel density estimation algorithm is used to detect the foreground. The extracted moving objects are used as candidate template to eliminate the influence of background. By adopting object matching based on distance matrix, new objects entering to the scene and occlusion-split between objects could be handled. The tracking accuracy is increased by using shadow removal and morphology processing. The experiment results show that the proposed method can achieve multiple-object tracking accurately, and deal with the occlusion-split between objects very well.</description><subject>Arrays</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Kernel</subject><subject>Object tracking</subject><subject>Target tracking</subject><issn>2164-4357</issn><isbn>1467351377</isbn><isbn>9781467351379</isbn><isbn>1467327646</isbn><isbn>9781467327640</isbn><isbn>1467327638</isbn><isbn>9781467327633</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FKw0AURUesYK39Ad3kBxLfy7yZySwlaA20dNG6LpPJi05tk5JEwb83YFb3XA5cuEI8ICSIYJ-KvNjtkxRQJtqQyQiuxB2SNjI1mvT1VBRKY2ZinqKmmKQyt2LZ90cAkJhlltRcpJvv0xDitjyyH6Khc_4rNB9R6XquoraJwvnStT8jb9g10e4z1MO9uKndqefllAvx_vqyz9_i9XZV5M_rOKBRQ6w9oXMZMtiakSuvwJeV1haUzCQYZm9Tj7VzwORGtAhUV5Jo9EqjXIjH_93AzIdLF86u-z1Mf-Ufpo9GUg</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Meifeng Gao</creator><creator>Di Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201303</creationdate><title>Multi-object tracking based on improved Mean Shift</title><author>Meifeng Gao ; Di Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c41aa81e09fe1edc50cbd6690538307eec92c1faa0e4a92c9104fd3445385613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Kernel</topic><topic>Object tracking</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Meifeng Gao</creatorcontrib><creatorcontrib>Di Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meifeng Gao</au><au>Di Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-object tracking based on improved Mean Shift</atitle><btitle>2013 IEEE Third International Conference on Information Science and Technology (ICIST)</btitle><stitle>ICIST</stitle><date>2013-03</date><risdate>2013</risdate><spage>1588</spage><epage>1592</epage><pages>1588-1592</pages><issn>2164-4357</issn><isbn>1467351377</isbn><isbn>9781467351379</isbn><eisbn>1467327646</eisbn><eisbn>9781467327640</eisbn><eisbn>1467327638</eisbn><eisbn>9781467327633</eisbn><abstract>Since Mean Shift algorithm can not track multiple objects, a full automatic multi-object tracking algorithm based on improved Mean Shift is proposed. The background subtraction image kernel density estimation algorithm is used to detect the foreground. The extracted moving objects are used as candidate template to eliminate the influence of background. By adopting object matching based on distance matrix, new objects entering to the scene and occlusion-split between objects could be handled. The tracking accuracy is increased by using shadow removal and morphology processing. The experiment results show that the proposed method can achieve multiple-object tracking accurately, and deal with the occlusion-split between objects very well.</abstract><pub>IEEE</pub><doi>10.1109/ICIST.2013.6747840</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-4357 |
ispartof | 2013 IEEE Third International Conference on Information Science and Technology (ICIST), 2013, p.1588-1592 |
issn | 2164-4357 |
language | eng |
recordid | cdi_ieee_primary_6747840 |
source | IEEE Xplore All Conference Series |
subjects | Arrays Histograms Image color analysis Kernel Object tracking Target tracking |
title | Multi-object tracking based on improved Mean Shift |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-object%20tracking%20based%20on%20improved%20Mean%20Shift&rft.btitle=2013%20IEEE%20Third%20International%20Conference%20on%20Information%20Science%20and%20Technology%20(ICIST)&rft.au=Meifeng%20Gao&rft.date=2013-03&rft.spage=1588&rft.epage=1592&rft.pages=1588-1592&rft.issn=2164-4357&rft.isbn=1467351377&rft.isbn_list=9781467351379&rft_id=info:doi/10.1109/ICIST.2013.6747840&rft.eisbn=1467327646&rft.eisbn_list=9781467327640&rft.eisbn_list=1467327638&rft.eisbn_list=9781467327633&rft_dat=%3Cieee_CHZPO%3E6747840%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-6c41aa81e09fe1edc50cbd6690538307eec92c1faa0e4a92c9104fd3445385613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6747840&rfr_iscdi=true |