Loading…
A Coupled Resonator Decoupling Network for Two-Element Compact Antenna Arrays in Mobile Terminals
A new concept for decoupling two coupled antenna elements in a broad band using a coupled resonator decoupling network (CRDN) is proposed for the first time. A synthesis and design theory of a CRDN is presented. Based on the admittance parameters of a given antenna array, a set of required rational...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2014-05, Vol.62 (5), p.2767-2776 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new concept for decoupling two coupled antenna elements in a broad band using a coupled resonator decoupling network (CRDN) is proposed for the first time. A synthesis and design theory of a CRDN is presented. Based on the admittance parameters of a given antenna array, a set of required rational functions and, consequently, the coupling matrix for a second-order decoupling network is obtained analytically. To prove the concept, two prototypes using microstrip resonators are designed and experimentally studied. Measurement results have demonstrated that an isolation improvement of more than 10 dB can be achieved within more than 15% bandwidth in both examples. The benefits of using a CRDN for different levels of isolation in a MIMO terminal are investigated through experiments and simulations. The results have shown that, as compared to the existing decoupling scheme using a lumped element, the proposed CRDN scheme can significantly increase the radiation efficiency, reduce the correlation, improve the channel capacity, and above all enhance the throughput of a MIMO terminal. The technique is general and can be applied to both symmetric and asymmetric arrays. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2014.2308547 |