Loading…
Video image quality analysis for enhancing tracker performance
Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video qu...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Irvine, John M. Wood, Richard J. Reed, David Lepanto, Janet |
description | Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis. |
doi_str_mv | 10.1109/AIPR.2013.6749326 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6749326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6749326</ieee_id><sourcerecordid>6749326</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdRMK0-gLiZF0icufOX2Qil-FMoKKJuy03mpo6maZ3ERd7egF0dOB8cvsPYtRSFlMLfLlYvrwUIqQrrtFdgT9hMauc9GC3UKctAKciNleaMZdIYkRuQ_oLN-v5LCFVKkBm7-4iB9jzucEv85xfbOIwcO2zHPva82SdO3Sd2dey2fEhYf1PiB0oT2E0tXbLzBtuero45Z-8P92_Lp3z9_LhaLtZ5BFEOea1dJWrhnHZONV6ApwBV4xFt8EjBOklVcAZAWwgQPDSAVKoAgEELUHN2878biWhzSJNvGjfH3-oPzFxKhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video image quality analysis for enhancing tracker performance</title><source>IEEE Xplore All Conference Series</source><creator>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</creator><creatorcontrib>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</creatorcontrib><description>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</description><identifier>ISSN: 1550-5219</identifier><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 1479925403</identifier><identifier>EISBN: 9781479925407</identifier><identifier>DOI: 10.1109/AIPR.2013.6749326</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Image quality ; NIIRS ; Noise ; Object detection ; prediction ; target detection and tracking ; Target tracking ; Video Image Quality ; video interpretability</subject><ispartof>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2013, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6749326$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6749326$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Wood, Richard J.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Lepanto, Janet</creatorcontrib><title>Video image quality analysis for enhancing tracker performance</title><title>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</description><subject>Clutter</subject><subject>Image quality</subject><subject>NIIRS</subject><subject>Noise</subject><subject>Object detection</subject><subject>prediction</subject><subject>target detection and tracking</subject><subject>Target tracking</subject><subject>Video Image Quality</subject><subject>video interpretability</subject><issn>1550-5219</issn><issn>2332-5615</issn><isbn>1479925403</isbn><isbn>9781479925407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdRMK0-gLiZF0icufOX2Qil-FMoKKJuy03mpo6maZ3ERd7egF0dOB8cvsPYtRSFlMLfLlYvrwUIqQrrtFdgT9hMauc9GC3UKctAKciNleaMZdIYkRuQ_oLN-v5LCFVKkBm7-4iB9jzucEv85xfbOIwcO2zHPva82SdO3Sd2dey2fEhYf1PiB0oT2E0tXbLzBtuero45Z-8P92_Lp3z9_LhaLtZ5BFEOea1dJWrhnHZONV6ApwBV4xFt8EjBOklVcAZAWwgQPDSAVKoAgEELUHN2878biWhzSJNvGjfH3-oPzFxKhA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Irvine, John M.</creator><creator>Wood, Richard J.</creator><creator>Reed, David</creator><creator>Lepanto, Janet</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131001</creationdate><title>Video image quality analysis for enhancing tracker performance</title><author>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clutter</topic><topic>Image quality</topic><topic>NIIRS</topic><topic>Noise</topic><topic>Object detection</topic><topic>prediction</topic><topic>target detection and tracking</topic><topic>Target tracking</topic><topic>Video Image Quality</topic><topic>video interpretability</topic><toplevel>online_resources</toplevel><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Wood, Richard J.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Lepanto, Janet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irvine, John M.</au><au>Wood, Richard J.</au><au>Reed, David</au><au>Lepanto, Janet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video image quality analysis for enhancing tracker performance</atitle><btitle>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2013-10-01</date><risdate>2013</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1550-5219</issn><eissn>2332-5615</eissn><eisbn>1479925403</eisbn><eisbn>9781479925407</eisbn><abstract>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2013.6749326</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5219 |
ispartof | 2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2013, p.1-9 |
issn | 1550-5219 2332-5615 |
language | eng |
recordid | cdi_ieee_primary_6749326 |
source | IEEE Xplore All Conference Series |
subjects | Clutter Image quality NIIRS Noise Object detection prediction target detection and tracking Target tracking Video Image Quality video interpretability |
title | Video image quality analysis for enhancing tracker performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20image%20quality%20analysis%20for%20enhancing%20tracker%20performance&rft.btitle=2013%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Irvine,%20John%20M.&rft.date=2013-10-01&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1550-5219&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR.2013.6749326&rft.eisbn=1479925403&rft.eisbn_list=9781479925407&rft_dat=%3Cieee_CHZPO%3E6749326%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6749326&rfr_iscdi=true |