Loading…

Video image quality analysis for enhancing tracker performance

Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video qu...

Full description

Saved in:
Bibliographic Details
Main Authors: Irvine, John M., Wood, Richard J., Reed, David, Lepanto, Janet
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue
container_start_page 1
container_title
container_volume
creator Irvine, John M.
Wood, Richard J.
Reed, David
Lepanto, Janet
description Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.
doi_str_mv 10.1109/AIPR.2013.6749326
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6749326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6749326</ieee_id><sourcerecordid>6749326</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023</originalsourceid><addsrcrecordid>eNotj81Kw0AUhUdRMK0-gLiZF0icufOX2Qil-FMoKKJuy03mpo6maZ3ERd7egF0dOB8cvsPYtRSFlMLfLlYvrwUIqQrrtFdgT9hMauc9GC3UKctAKciNleaMZdIYkRuQ_oLN-v5LCFVKkBm7-4iB9jzucEv85xfbOIwcO2zHPva82SdO3Sd2dey2fEhYf1PiB0oT2E0tXbLzBtuero45Z-8P92_Lp3z9_LhaLtZ5BFEOea1dJWrhnHZONV6ApwBV4xFt8EjBOklVcAZAWwgQPDSAVKoAgEELUHN2878biWhzSJNvGjfH3-oPzFxKhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video image quality analysis for enhancing tracker performance</title><source>IEEE Xplore All Conference Series</source><creator>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</creator><creatorcontrib>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</creatorcontrib><description>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</description><identifier>ISSN: 1550-5219</identifier><identifier>EISSN: 2332-5615</identifier><identifier>EISBN: 1479925403</identifier><identifier>EISBN: 9781479925407</identifier><identifier>DOI: 10.1109/AIPR.2013.6749326</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Image quality ; NIIRS ; Noise ; Object detection ; prediction ; target detection and tracking ; Target tracking ; Video Image Quality ; video interpretability</subject><ispartof>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2013, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6749326$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6749326$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Wood, Richard J.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Lepanto, Janet</creatorcontrib><title>Video image quality analysis for enhancing tracker performance</title><title>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</title><addtitle>AIPR</addtitle><description>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</description><subject>Clutter</subject><subject>Image quality</subject><subject>NIIRS</subject><subject>Noise</subject><subject>Object detection</subject><subject>prediction</subject><subject>target detection and tracking</subject><subject>Target tracking</subject><subject>Video Image Quality</subject><subject>video interpretability</subject><issn>1550-5219</issn><issn>2332-5615</issn><isbn>1479925403</isbn><isbn>9781479925407</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AUhUdRMK0-gLiZF0icufOX2Qil-FMoKKJuy03mpo6maZ3ERd7egF0dOB8cvsPYtRSFlMLfLlYvrwUIqQrrtFdgT9hMauc9GC3UKctAKciNleaMZdIYkRuQ_oLN-v5LCFVKkBm7-4iB9jzucEv85xfbOIwcO2zHPva82SdO3Sd2dey2fEhYf1PiB0oT2E0tXbLzBtuero45Z-8P92_Lp3z9_LhaLtZ5BFEOea1dJWrhnHZONV6ApwBV4xFt8EjBOklVcAZAWwgQPDSAVKoAgEELUHN2878biWhzSJNvGjfH3-oPzFxKhA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Irvine, John M.</creator><creator>Wood, Richard J.</creator><creator>Reed, David</creator><creator>Lepanto, Janet</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20131001</creationdate><title>Video image quality analysis for enhancing tracker performance</title><author>Irvine, John M. ; Wood, Richard J. ; Reed, David ; Lepanto, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Clutter</topic><topic>Image quality</topic><topic>NIIRS</topic><topic>Noise</topic><topic>Object detection</topic><topic>prediction</topic><topic>target detection and tracking</topic><topic>Target tracking</topic><topic>Video Image Quality</topic><topic>video interpretability</topic><toplevel>online_resources</toplevel><creatorcontrib>Irvine, John M.</creatorcontrib><creatorcontrib>Wood, Richard J.</creatorcontrib><creatorcontrib>Reed, David</creatorcontrib><creatorcontrib>Lepanto, Janet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irvine, John M.</au><au>Wood, Richard J.</au><au>Reed, David</au><au>Lepanto, Janet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video image quality analysis for enhancing tracker performance</atitle><btitle>2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)</btitle><stitle>AIPR</stitle><date>2013-10-01</date><risdate>2013</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1550-5219</issn><eissn>2332-5615</eissn><eisbn>1479925403</eisbn><eisbn>9781479925407</eisbn><abstract>Object tracking in video data is fundamental to many practical applications, including gesture recognition, activity analysis, physical security, and surveillance. A fundamental assumption is that the quality of the video stream is adequate to support the analysis. In practice, however, the video quality can vary widely due to lighting and weather, camera placement, and data compression. These factors affect the performance of object tracking algorithms. We present a method for automated analysis of the video quality which can be used to adjust the object tracker appropriately. This paper extends earlier research, presenting a model for quantifying the quality of motion imagery in the context of automated exploitation. We present a method for predicting the tracker performance and demonstrate the results on a range of video clips. The model rests on a suite of image metrics computed in real-time from the video. We will describe the metrics and the formulation of the quality estimation model. Results from a recent experiment will quantify the empirical performance of the model. We conclude with a discussion of methods for enhancing tracker performance based on the real-time video quality analysis.</abstract><pub>IEEE</pub><doi>10.1109/AIPR.2013.6749326</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5219
ispartof 2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 2013, p.1-9
issn 1550-5219
2332-5615
language eng
recordid cdi_ieee_primary_6749326
source IEEE Xplore All Conference Series
subjects Clutter
Image quality
NIIRS
Noise
Object detection
prediction
target detection and tracking
Target tracking
Video Image Quality
video interpretability
title Video image quality analysis for enhancing tracker performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20image%20quality%20analysis%20for%20enhancing%20tracker%20performance&rft.btitle=2013%20IEEE%20Applied%20Imagery%20Pattern%20Recognition%20Workshop%20(AIPR)&rft.au=Irvine,%20John%20M.&rft.date=2013-10-01&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1550-5219&rft.eissn=2332-5615&rft_id=info:doi/10.1109/AIPR.2013.6749326&rft.eisbn=1479925403&rft.eisbn_list=9781479925407&rft_dat=%3Cieee_CHZPO%3E6749326%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-c47b0c0774773f9029ed2bf9aa6d9aed671ebd7522462d2d92f2ae83d22ad4023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6749326&rfr_iscdi=true