Loading…
Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors
In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-u...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1248 |
container_issue | |
container_start_page | 1241 |
container_title | |
container_volume | |
creator | Huang, Weilin Lin, Zhe Yang, Jianchao Wang, Jue |
description | In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin. |
doi_str_mv | 10.1109/ICCV.2013.157 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6751264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6751264</ieee_id><sourcerecordid>1669857099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3</originalsourceid><addsrcrecordid>eNotjjtPwzAUhQ0CibYwMrF4ZEnxjR-JRxQoVKpgoGWNHOemMiRxsVME_HrCYzrSOZ8-HULOgc0BmL5aFsXzPGXA5yCzAzIFkWmd5oKlh2SS8pwlmWTiiExASpZIofUJmcb4whgfMTUh1Ro_Brry1rTuywzO99T19MEM-2BauuzMFiPdRNdv6dMQ_CvSBf6MSNfB9LHxoaOmr-mvpvDvJjjTW6Q3GG1wu8GHeEqOG9NGPPvPGdksbtfFfbJ6vFsW16vEceBDkqO1Vglu0FbQgMmbpraghNDcosS6ymQtG0CDKrdQYYbpWIDmijW5FjWfkcs_7y74tz3GoexctNi2pke_jyUopXOZMa1H9OIPdYhY7oLrTPgsVSYhHR98Azv6ZZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1669857099</pqid></control><display><type>conference_proceeding</type><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</creator><creatorcontrib>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</creatorcontrib><description>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</description><identifier>ISSN: 1550-5499</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1479928402</identifier><identifier>EISBN: 9781479928408</identifier><identifier>DOI: 10.1109/ICCV.2013.157</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classifiers ; Color ; Covariance ; Covariance matrices ; Feature extraction ; Heuristic ; Image color analysis ; Image edge detection ; Low-level filter ; Pixels ; Position (location) ; stroke width transform ; Strokes ; text component ; text covariance descriptors ; Texts ; Transforms ; Vectors</subject><ispartof>2013 IEEE International Conference on Computer Vision, 2013, p.1241-1248</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6751264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6751264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Weilin</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yang, Jianchao</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><title>2013 IEEE International Conference on Computer Vision</title><addtitle>iccv</addtitle><description>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</description><subject>Classifiers</subject><subject>Color</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Feature extraction</subject><subject>Heuristic</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Low-level filter</subject><subject>Pixels</subject><subject>Position (location)</subject><subject>stroke width transform</subject><subject>Strokes</subject><subject>text component</subject><subject>text covariance descriptors</subject><subject>Texts</subject><subject>Transforms</subject><subject>Vectors</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1479928402</isbn><isbn>9781479928408</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjjtPwzAUhQ0CibYwMrF4ZEnxjR-JRxQoVKpgoGWNHOemMiRxsVME_HrCYzrSOZ8-HULOgc0BmL5aFsXzPGXA5yCzAzIFkWmd5oKlh2SS8pwlmWTiiExASpZIofUJmcb4whgfMTUh1Ro_Brry1rTuywzO99T19MEM-2BauuzMFiPdRNdv6dMQ_CvSBf6MSNfB9LHxoaOmr-mvpvDvJjjTW6Q3GG1wu8GHeEqOG9NGPPvPGdksbtfFfbJ6vFsW16vEceBDkqO1Vglu0FbQgMmbpraghNDcosS6ymQtG0CDKrdQYYbpWIDmijW5FjWfkcs_7y74tz3GoexctNi2pke_jyUopXOZMa1H9OIPdYhY7oLrTPgsVSYhHR98Azv6ZZ0</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Huang, Weilin</creator><creator>Lin, Zhe</creator><creator>Yang, Jianchao</creator><creator>Wang, Jue</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><author>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classifiers</topic><topic>Color</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Feature extraction</topic><topic>Heuristic</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Low-level filter</topic><topic>Pixels</topic><topic>Position (location)</topic><topic>stroke width transform</topic><topic>Strokes</topic><topic>text component</topic><topic>text covariance descriptors</topic><topic>Texts</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weilin</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yang, Jianchao</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Weilin</au><au>Lin, Zhe</au><au>Yang, Jianchao</au><au>Wang, Jue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</atitle><btitle>2013 IEEE International Conference on Computer Vision</btitle><stitle>iccv</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>1241</spage><epage>1248</epage><pages>1241-1248</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><eisbn>1479928402</eisbn><eisbn>9781479928408</eisbn><coden>IEEPAD</coden><abstract>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2013.157</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2013 IEEE International Conference on Computer Vision, 2013, p.1241-1248 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_6751264 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classifiers Color Covariance Covariance matrices Feature extraction Heuristic Image color analysis Image edge detection Low-level filter Pixels Position (location) stroke width transform Strokes text component text covariance descriptors Texts Transforms Vectors |
title | Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20Localization%20in%20Natural%20Images%20Using%20Stroke%20Feature%20Transform%20and%20Text%20Covariance%20Descriptors&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Huang,%20Weilin&rft.date=2013-12-01&rft.spage=1241&rft.epage=1248&rft.pages=1241-1248&rft.issn=1550-5499&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2013.157&rft.eisbn=1479928402&rft.eisbn_list=9781479928408&rft_dat=%3Cproquest_6IE%3E1669857099%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669857099&rft_id=info:pmid/&rft_ieee_id=6751264&rfr_iscdi=true |