Loading…

Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors

In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-u...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Weilin, Lin, Zhe, Yang, Jianchao, Wang, Jue
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1248
container_issue
container_start_page 1241
container_title
container_volume
creator Huang, Weilin
Lin, Zhe
Yang, Jianchao
Wang, Jue
description In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.
doi_str_mv 10.1109/ICCV.2013.157
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6751264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6751264</ieee_id><sourcerecordid>1669857099</sourcerecordid><originalsourceid>FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3</originalsourceid><addsrcrecordid>eNotjjtPwzAUhQ0CibYwMrF4ZEnxjR-JRxQoVKpgoGWNHOemMiRxsVME_HrCYzrSOZ8-HULOgc0BmL5aFsXzPGXA5yCzAzIFkWmd5oKlh2SS8pwlmWTiiExASpZIofUJmcb4whgfMTUh1Ro_Brry1rTuywzO99T19MEM-2BauuzMFiPdRNdv6dMQ_CvSBf6MSNfB9LHxoaOmr-mvpvDvJjjTW6Q3GG1wu8GHeEqOG9NGPPvPGdksbtfFfbJ6vFsW16vEceBDkqO1Vglu0FbQgMmbpraghNDcosS6ymQtG0CDKrdQYYbpWIDmijW5FjWfkcs_7y74tz3GoexctNi2pke_jyUopXOZMa1H9OIPdYhY7oLrTPgsVSYhHR98Azv6ZZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1669857099</pqid></control><display><type>conference_proceeding</type><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</creator><creatorcontrib>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</creatorcontrib><description>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</description><identifier>ISSN: 1550-5499</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1479928402</identifier><identifier>EISBN: 9781479928408</identifier><identifier>DOI: 10.1109/ICCV.2013.157</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classifiers ; Color ; Covariance ; Covariance matrices ; Feature extraction ; Heuristic ; Image color analysis ; Image edge detection ; Low-level filter ; Pixels ; Position (location) ; stroke width transform ; Strokes ; text component ; text covariance descriptors ; Texts ; Transforms ; Vectors</subject><ispartof>2013 IEEE International Conference on Computer Vision, 2013, p.1241-1248</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6751264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6751264$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Weilin</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yang, Jianchao</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><title>2013 IEEE International Conference on Computer Vision</title><addtitle>iccv</addtitle><description>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</description><subject>Classifiers</subject><subject>Color</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Feature extraction</subject><subject>Heuristic</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Low-level filter</subject><subject>Pixels</subject><subject>Position (location)</subject><subject>stroke width transform</subject><subject>Strokes</subject><subject>text component</subject><subject>text covariance descriptors</subject><subject>Texts</subject><subject>Transforms</subject><subject>Vectors</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1479928402</isbn><isbn>9781479928408</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjjtPwzAUhQ0CibYwMrF4ZEnxjR-JRxQoVKpgoGWNHOemMiRxsVME_HrCYzrSOZ8-HULOgc0BmL5aFsXzPGXA5yCzAzIFkWmd5oKlh2SS8pwlmWTiiExASpZIofUJmcb4whgfMTUh1Ro_Brry1rTuywzO99T19MEM-2BauuzMFiPdRNdv6dMQ_CvSBf6MSNfB9LHxoaOmr-mvpvDvJjjTW6Q3GG1wu8GHeEqOG9NGPPvPGdksbtfFfbJ6vFsW16vEceBDkqO1Vglu0FbQgMmbpraghNDcosS6ymQtG0CDKrdQYYbpWIDmijW5FjWfkcs_7y74tz3GoexctNi2pke_jyUopXOZMa1H9OIPdYhY7oLrTPgsVSYhHR98Azv6ZZ0</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Huang, Weilin</creator><creator>Lin, Zhe</creator><creator>Yang, Jianchao</creator><creator>Wang, Jue</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</title><author>Huang, Weilin ; Lin, Zhe ; Yang, Jianchao ; Wang, Jue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classifiers</topic><topic>Color</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Feature extraction</topic><topic>Heuristic</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Low-level filter</topic><topic>Pixels</topic><topic>Position (location)</topic><topic>stroke width transform</topic><topic>Strokes</topic><topic>text component</topic><topic>text covariance descriptors</topic><topic>Texts</topic><topic>Transforms</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Weilin</creatorcontrib><creatorcontrib>Lin, Zhe</creatorcontrib><creatorcontrib>Yang, Jianchao</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Weilin</au><au>Lin, Zhe</au><au>Yang, Jianchao</au><au>Wang, Jue</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors</atitle><btitle>2013 IEEE International Conference on Computer Vision</btitle><stitle>iccv</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>1241</spage><epage>1248</epage><pages>1241-1248</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><eisbn>1479928402</eisbn><eisbn>9781479928408</eisbn><coden>IEEPAD</coden><abstract>In this paper, we present a new approach for text localization in natural images, by discriminating text and non-text regions at three levels: pixel, component and text line levels. Firstly, a powerful low-level filter called the Stroke Feature Transform (SFT) is proposed, which extends the widely-used Stroke Width Transform (SWT) by incorporating color cues of text pixels, leading to significantly enhanced performance on inter-component separation and intra-component connection. Secondly, based on the output of SFT, we apply two classifiers, a text component classifier and a text-line classifier, sequentially to extract text regions, eliminating the heuristic procedures that are commonly used in previous approaches. The two classifiers are built upon two novel Text Covariance Descriptors (TCDs) that encode both the heuristic properties and the statistical characteristics of text stokes. Finally, text regions are located by simply thresholding the text-line confident map. Our method was evaluated on two benchmark datasets: ICDAR 2005 and ICDAR 2011, and the corresponding F-measure values are 0.72 and 0.73, respectively, surpassing previous methods in accuracy by a large margin.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2013.157</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2013 IEEE International Conference on Computer Vision, 2013, p.1241-1248
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6751264
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classifiers
Color
Covariance
Covariance matrices
Feature extraction
Heuristic
Image color analysis
Image edge detection
Low-level filter
Pixels
Position (location)
stroke width transform
Strokes
text component
text covariance descriptors
Texts
Transforms
Vectors
title Text Localization in Natural Images Using Stroke Feature Transform and Text Covariance Descriptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Text%20Localization%20in%20Natural%20Images%20Using%20Stroke%20Feature%20Transform%20and%20Text%20Covariance%20Descriptors&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Huang,%20Weilin&rft.date=2013-12-01&rft.spage=1241&rft.epage=1248&rft.pages=1241-1248&rft.issn=1550-5499&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2013.157&rft.eisbn=1479928402&rft.eisbn_list=9781479928408&rft_dat=%3Cproquest_6IE%3E1669857099%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i313t-8eccc643aecb1f1a8ffdc164493ce5edb75d5f1eae68c1be7e25d519360f894d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669857099&rft_id=info:pmid/&rft_ieee_id=6751264&rfr_iscdi=true