Loading…
Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition
Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernel...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273 |
---|---|
cites | |
container_end_page | 2495 |
container_issue | |
container_start_page | 2488 |
container_title | |
container_volume | |
creator | Cabral, Ricardo De la Torre, Fernando Costeira, Joao P. Bernardino, Alexandre |
description | Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data. |
doi_str_mv | 10.1109/ICCV.2013.309 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6751420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6751420</ieee_id><sourcerecordid>1669856787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</originalsourceid><addsrcrecordid>eNotzztPwzAUBWCDQKItjEwsHllS_EjseCyBQqVSJETZUHTrOGBI7GCngvLraVWmKx19OjoXoXNKxpQSdTUripcxI5SPOVEHaEhTqRTLU8IO0YDxnCQyI-kRGtAsI0mWKnWChjF-EMK3TAzQ69LZemPdG16sdWMg4IUPLQZX4WvbWLdLpqB7H-wv9NY7POm64EG_m4hrH_DcfydP4D7xA_TB_uAbo33b-Wh3-BQd19BEc_Z_R2g5vX0u7pP5492smMwTzWneJ4KvZM2JFAIkaJVpkFwbLRnjpqbcUAKsMrrOQVdaSpGq7Te1YZqrarViko_Q5b53O-1rbWJftjZq0zTgjF_Hkgqh8kzIfEcv9tQaY8ou2BbCphQyoykj_A-juGMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1669856787</pqid></control><display><type>conference_proceeding</type><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</creator><creatorcontrib>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</creatorcontrib><description>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</description><identifier>ISSN: 1550-5499</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1479928402</identifier><identifier>EISBN: 9781479928408</identifier><identifier>DOI: 10.1109/ICCV.2013.309</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computational modeling ; Computer vision ; Factorization ; Mathematical models ; Missing data ; Norms ; Numerical analysis ; Numerical models ; Optimization ; Photometry ; Principal component analysis ; Robustness</subject><ispartof>2013 IEEE International Conference on Computer Vision, 2013, p.2488-2495</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6751420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6751420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cabral, Ricardo</creatorcontrib><creatorcontrib>De la Torre, Fernando</creatorcontrib><creatorcontrib>Costeira, Joao P.</creatorcontrib><creatorcontrib>Bernardino, Alexandre</creatorcontrib><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><title>2013 IEEE International Conference on Computer Vision</title><addtitle>iccv</addtitle><description>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Factorization</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Photometry</subject><subject>Principal component analysis</subject><subject>Robustness</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1479928402</isbn><isbn>9781479928408</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzztPwzAUBWCDQKItjEwsHllS_EjseCyBQqVSJETZUHTrOGBI7GCngvLraVWmKx19OjoXoXNKxpQSdTUripcxI5SPOVEHaEhTqRTLU8IO0YDxnCQyI-kRGtAsI0mWKnWChjF-EMK3TAzQ69LZemPdG16sdWMg4IUPLQZX4WvbWLdLpqB7H-wv9NY7POm64EG_m4hrH_DcfydP4D7xA_TB_uAbo33b-Wh3-BQd19BEc_Z_R2g5vX0u7pP5492smMwTzWneJ4KvZM2JFAIkaJVpkFwbLRnjpqbcUAKsMrrOQVdaSpGq7Te1YZqrarViko_Q5b53O-1rbWJftjZq0zTgjF_Hkgqh8kzIfEcv9tQaY8ou2BbCphQyoykj_A-juGMm</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Cabral, Ricardo</creator><creator>De la Torre, Fernando</creator><creator>Costeira, Joao P.</creator><creator>Bernardino, Alexandre</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><author>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Factorization</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Photometry</topic><topic>Principal component analysis</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Cabral, Ricardo</creatorcontrib><creatorcontrib>De la Torre, Fernando</creatorcontrib><creatorcontrib>Costeira, Joao P.</creatorcontrib><creatorcontrib>Bernardino, Alexandre</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabral, Ricardo</au><au>De la Torre, Fernando</au><au>Costeira, Joao P.</au><au>Bernardino, Alexandre</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</atitle><btitle>2013 IEEE International Conference on Computer Vision</btitle><stitle>iccv</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>2488</spage><epage>2495</epage><pages>2488-2495</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><eisbn>1479928402</eisbn><eisbn>9781479928408</eisbn><coden>IEEPAD</coden><abstract>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2013.309</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5499 |
ispartof | 2013 IEEE International Conference on Computer Vision, 2013, p.2488-2495 |
issn | 1550-5499 2380-7504 |
language | eng |
recordid | cdi_ieee_primary_6751420 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Algorithms Computational modeling Computer vision Factorization Mathematical models Missing data Norms Numerical analysis Numerical models Optimization Photometry Principal component analysis Robustness |
title | Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unifying%20Nuclear%20Norm%20and%20Bilinear%20Factorization%20Approaches%20for%20Low-Rank%20Matrix%20Decomposition&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Cabral,%20Ricardo&rft.date=2013-12-01&rft.spage=2488&rft.epage=2495&rft.pages=2488-2495&rft.issn=1550-5499&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2013.309&rft.eisbn=1479928402&rft.eisbn_list=9781479928408&rft_dat=%3Cproquest_6IE%3E1669856787%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669856787&rft_id=info:pmid/&rft_ieee_id=6751420&rfr_iscdi=true |