Loading…

Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition

Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernel...

Full description

Saved in:
Bibliographic Details
Main Authors: Cabral, Ricardo, De la Torre, Fernando, Costeira, Joao P., Bernardino, Alexandre
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273
cites
container_end_page 2495
container_issue
container_start_page 2488
container_title
container_volume
creator Cabral, Ricardo
De la Torre, Fernando
Costeira, Joao P.
Bernardino, Alexandre
description Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.
doi_str_mv 10.1109/ICCV.2013.309
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_6751420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6751420</ieee_id><sourcerecordid>1669856787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</originalsourceid><addsrcrecordid>eNotzztPwzAUBWCDQKItjEwsHllS_EjseCyBQqVSJETZUHTrOGBI7GCngvLraVWmKx19OjoXoXNKxpQSdTUripcxI5SPOVEHaEhTqRTLU8IO0YDxnCQyI-kRGtAsI0mWKnWChjF-EMK3TAzQ69LZemPdG16sdWMg4IUPLQZX4WvbWLdLpqB7H-wv9NY7POm64EG_m4hrH_DcfydP4D7xA_TB_uAbo33b-Wh3-BQd19BEc_Z_R2g5vX0u7pP5492smMwTzWneJ4KvZM2JFAIkaJVpkFwbLRnjpqbcUAKsMrrOQVdaSpGq7Te1YZqrarViko_Q5b53O-1rbWJftjZq0zTgjF_Hkgqh8kzIfEcv9tQaY8ou2BbCphQyoykj_A-juGMm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1669856787</pqid></control><display><type>conference_proceeding</type><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</creator><creatorcontrib>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</creatorcontrib><description>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</description><identifier>ISSN: 1550-5499</identifier><identifier>EISSN: 2380-7504</identifier><identifier>EISBN: 1479928402</identifier><identifier>EISBN: 9781479928408</identifier><identifier>DOI: 10.1109/ICCV.2013.309</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Computational modeling ; Computer vision ; Factorization ; Mathematical models ; Missing data ; Norms ; Numerical analysis ; Numerical models ; Optimization ; Photometry ; Principal component analysis ; Robustness</subject><ispartof>2013 IEEE International Conference on Computer Vision, 2013, p.2488-2495</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6751420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6751420$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cabral, Ricardo</creatorcontrib><creatorcontrib>De la Torre, Fernando</creatorcontrib><creatorcontrib>Costeira, Joao P.</creatorcontrib><creatorcontrib>Bernardino, Alexandre</creatorcontrib><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><title>2013 IEEE International Conference on Computer Vision</title><addtitle>iccv</addtitle><description>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Factorization</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Photometry</subject><subject>Principal component analysis</subject><subject>Robustness</subject><issn>1550-5499</issn><issn>2380-7504</issn><isbn>1479928402</isbn><isbn>9781479928408</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzztPwzAUBWCDQKItjEwsHllS_EjseCyBQqVSJETZUHTrOGBI7GCngvLraVWmKx19OjoXoXNKxpQSdTUripcxI5SPOVEHaEhTqRTLU8IO0YDxnCQyI-kRGtAsI0mWKnWChjF-EMK3TAzQ69LZemPdG16sdWMg4IUPLQZX4WvbWLdLpqB7H-wv9NY7POm64EG_m4hrH_DcfydP4D7xA_TB_uAbo33b-Wh3-BQd19BEc_Z_R2g5vX0u7pP5492smMwTzWneJ4KvZM2JFAIkaJVpkFwbLRnjpqbcUAKsMrrOQVdaSpGq7Te1YZqrarViko_Q5b53O-1rbWJftjZq0zTgjF_Hkgqh8kzIfEcv9tQaY8ou2BbCphQyoykj_A-juGMm</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Cabral, Ricardo</creator><creator>De la Torre, Fernando</creator><creator>Costeira, Joao P.</creator><creator>Bernardino, Alexandre</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</title><author>Cabral, Ricardo ; De la Torre, Fernando ; Costeira, Joao P. ; Bernardino, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Factorization</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Photometry</topic><topic>Principal component analysis</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Cabral, Ricardo</creatorcontrib><creatorcontrib>De la Torre, Fernando</creatorcontrib><creatorcontrib>Costeira, Joao P.</creatorcontrib><creatorcontrib>Bernardino, Alexandre</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabral, Ricardo</au><au>De la Torre, Fernando</au><au>Costeira, Joao P.</au><au>Bernardino, Alexandre</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition</atitle><btitle>2013 IEEE International Conference on Computer Vision</btitle><stitle>iccv</stitle><date>2013-12-01</date><risdate>2013</risdate><spage>2488</spage><epage>2495</epage><pages>2488-2495</pages><issn>1550-5499</issn><eissn>2380-7504</eissn><eisbn>1479928402</eisbn><eisbn>9781479928408</eisbn><coden>IEEPAD</coden><abstract>Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a "rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.</abstract><pub>IEEE</pub><doi>10.1109/ICCV.2013.309</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-5499
ispartof 2013 IEEE International Conference on Computer Vision, 2013, p.2488-2495
issn 1550-5499
2380-7504
language eng
recordid cdi_ieee_primary_6751420
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Algorithms
Computational modeling
Computer vision
Factorization
Mathematical models
Missing data
Norms
Numerical analysis
Numerical models
Optimization
Photometry
Principal component analysis
Robustness
title Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unifying%20Nuclear%20Norm%20and%20Bilinear%20Factorization%20Approaches%20for%20Low-Rank%20Matrix%20Decomposition&rft.btitle=2013%20IEEE%20International%20Conference%20on%20Computer%20Vision&rft.au=Cabral,%20Ricardo&rft.date=2013-12-01&rft.spage=2488&rft.epage=2495&rft.pages=2488-2495&rft.issn=1550-5499&rft.eissn=2380-7504&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCV.2013.309&rft.eisbn=1479928402&rft.eisbn_list=9781479928408&rft_dat=%3Cproquest_6IE%3E1669856787%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-63b7f30766a7ac95ca73cec7223ef13e10a2decf8acdc77649550fe2c39dbb273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669856787&rft_id=info:pmid/&rft_ieee_id=6751420&rfr_iscdi=true