Loading…

5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor

A resonant-clock design for the IBM POWER8 processor core was implemented with 2 resonant modes (and a non-resonant mode), saving clock power over a wide frequency range from 2.5GHz to more than 5GHz. The POWER8 microprocessor is composed of 12 chiplets, each containing a single resonant clock grid...

Full description

Saved in:
Bibliographic Details
Main Authors: Restle, Phillip, Shan, David, Hogenmiller, David, Yong Kim, Drake, Alan, Hibbeler, Jason, Bucelot, Thomas, Still, Gregory, Jenkins, Keith, Friedrich, Joshua
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 101
container_issue
container_start_page 100
container_title
container_volume
creator Restle, Phillip
Shan, David
Hogenmiller, David
Yong Kim
Drake, Alan
Hibbeler, Jason
Bucelot, Thomas
Still, Gregory
Jenkins, Keith
Friedrich, Joshua
description A resonant-clock design for the IBM POWER8 processor core was implemented with 2 resonant modes (and a non-resonant mode), saving clock power over a wide frequency range from 2.5GHz to more than 5GHz. The POWER8 microprocessor is composed of 12 chiplets, each containing a single resonant clock grid for one core and its L2 cache, and a half-frequency, non-resonant clock grid for the L3 cache. The clock grids drive the local clock buffers (LCBs) that in turn drive the latches. The LCBs are gated off to measure the global clock power from the PLL to the LCBs. The resonant core communicates synchronously with the L3, requiring low skew between the domains. The chip was designed in a 22nm SOI process, including two ultra-thick-metal (UTM) layers (3 microns thick) for power distribution, I/O, all long global clock wires, and the resonant clock inductors. The UTM technology reduces wire resistance and simplifies inductor design, but requires accurate transmission line modeling and special routing.
doi_str_mv 10.1109/ISSCC.2014.6757355
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6757355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6757355</ieee_id><sourcerecordid>6757355</sourcerecordid><originalsourceid>FETCH-ieee_primary_67573553</originalsourceid><addsrcrecordid>eNp9z71OwzAYhWHzJ5FCbwAW34DD57i24zkqKgMC0Uodq8j90hgSu9hBKHdPhsxMZ3je5RDywCHnHMzTy3ZbVXkBfJUrLbWQ8oIsjS75ShsDpgBzSbJCaMVKBeqKLGbgJb8mGXAjmJICbskipU8AkEaVGUGZC7p3R2RNxO8f9HZksfYnpBFT8LUfqO2C_aK_bmhp8Gxop7QbaR-OSG07pc6faBMinYS-v-3XH-XulfbOxnCOwWJKId6Tm6buEi7nvSOPz-tdtWEOEQ_n6Po6jof5lvhf_wCkZUu5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Restle, Phillip ; Shan, David ; Hogenmiller, David ; Yong Kim ; Drake, Alan ; Hibbeler, Jason ; Bucelot, Thomas ; Still, Gregory ; Jenkins, Keith ; Friedrich, Joshua</creator><creatorcontrib>Restle, Phillip ; Shan, David ; Hogenmiller, David ; Yong Kim ; Drake, Alan ; Hibbeler, Jason ; Bucelot, Thomas ; Still, Gregory ; Jenkins, Keith ; Friedrich, Joshua</creatorcontrib><description>A resonant-clock design for the IBM POWER8 processor core was implemented with 2 resonant modes (and a non-resonant mode), saving clock power over a wide frequency range from 2.5GHz to more than 5GHz. The POWER8 microprocessor is composed of 12 chiplets, each containing a single resonant clock grid for one core and its L2 cache, and a half-frequency, non-resonant clock grid for the L3 cache. The clock grids drive the local clock buffers (LCBs) that in turn drive the latches. The LCBs are gated off to measure the global clock power from the PLL to the LCBs. The resonant core communicates synchronously with the L3, requiring low skew between the domains. The chip was designed in a 22nm SOI process, including two ultra-thick-metal (UTM) layers (3 microns thick) for power distribution, I/O, all long global clock wires, and the resonant clock inductors. The UTM technology reduces wire resistance and simplifies inductor design, but requires accurate transmission line modeling and special routing.</description><identifier>ISSN: 0193-6530</identifier><identifier>ISBN: 1479909181</identifier><identifier>ISBN: 9781479909186</identifier><identifier>EISSN: 2376-8606</identifier><identifier>EISBN: 9781479909209</identifier><identifier>EISBN: 1479909203</identifier><identifier>DOI: 10.1109/ISSCC.2014.6757355</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; Inductors ; Power measurement ; Resonant frequency ; Switches ; Synchronization ; Wires</subject><ispartof>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, p.100-101</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6757355$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6757355$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Restle, Phillip</creatorcontrib><creatorcontrib>Shan, David</creatorcontrib><creatorcontrib>Hogenmiller, David</creatorcontrib><creatorcontrib>Yong Kim</creatorcontrib><creatorcontrib>Drake, Alan</creatorcontrib><creatorcontrib>Hibbeler, Jason</creatorcontrib><creatorcontrib>Bucelot, Thomas</creatorcontrib><creatorcontrib>Still, Gregory</creatorcontrib><creatorcontrib>Jenkins, Keith</creatorcontrib><creatorcontrib>Friedrich, Joshua</creatorcontrib><title>5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor</title><title>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)</title><addtitle>ISSCC</addtitle><description>A resonant-clock design for the IBM POWER8 processor core was implemented with 2 resonant modes (and a non-resonant mode), saving clock power over a wide frequency range from 2.5GHz to more than 5GHz. The POWER8 microprocessor is composed of 12 chiplets, each containing a single resonant clock grid for one core and its L2 cache, and a half-frequency, non-resonant clock grid for the L3 cache. The clock grids drive the local clock buffers (LCBs) that in turn drive the latches. The LCBs are gated off to measure the global clock power from the PLL to the LCBs. The resonant core communicates synchronously with the L3, requiring low skew between the domains. The chip was designed in a 22nm SOI process, including two ultra-thick-metal (UTM) layers (3 microns thick) for power distribution, I/O, all long global clock wires, and the resonant clock inductors. The UTM technology reduces wire resistance and simplifies inductor design, but requires accurate transmission line modeling and special routing.</description><subject>Clocks</subject><subject>Inductors</subject><subject>Power measurement</subject><subject>Resonant frequency</subject><subject>Switches</subject><subject>Synchronization</subject><subject>Wires</subject><issn>0193-6530</issn><issn>2376-8606</issn><isbn>1479909181</isbn><isbn>9781479909186</isbn><isbn>9781479909209</isbn><isbn>1479909203</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9z71OwzAYhWHzJ5FCbwAW34DD57i24zkqKgMC0Uodq8j90hgSu9hBKHdPhsxMZ3je5RDywCHnHMzTy3ZbVXkBfJUrLbWQ8oIsjS75ShsDpgBzSbJCaMVKBeqKLGbgJb8mGXAjmJICbskipU8AkEaVGUGZC7p3R2RNxO8f9HZksfYnpBFT8LUfqO2C_aK_bmhp8Gxop7QbaR-OSG07pc6faBMinYS-v-3XH-XulfbOxnCOwWJKId6Tm6buEi7nvSOPz-tdtWEOEQ_n6Po6jof5lvhf_wCkZUu5</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Restle, Phillip</creator><creator>Shan, David</creator><creator>Hogenmiller, David</creator><creator>Yong Kim</creator><creator>Drake, Alan</creator><creator>Hibbeler, Jason</creator><creator>Bucelot, Thomas</creator><creator>Still, Gregory</creator><creator>Jenkins, Keith</creator><creator>Friedrich, Joshua</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201402</creationdate><title>5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor</title><author>Restle, Phillip ; Shan, David ; Hogenmiller, David ; Yong Kim ; Drake, Alan ; Hibbeler, Jason ; Bucelot, Thomas ; Still, Gregory ; Jenkins, Keith ; Friedrich, Joshua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_67573553</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clocks</topic><topic>Inductors</topic><topic>Power measurement</topic><topic>Resonant frequency</topic><topic>Switches</topic><topic>Synchronization</topic><topic>Wires</topic><toplevel>online_resources</toplevel><creatorcontrib>Restle, Phillip</creatorcontrib><creatorcontrib>Shan, David</creatorcontrib><creatorcontrib>Hogenmiller, David</creatorcontrib><creatorcontrib>Yong Kim</creatorcontrib><creatorcontrib>Drake, Alan</creatorcontrib><creatorcontrib>Hibbeler, Jason</creatorcontrib><creatorcontrib>Bucelot, Thomas</creatorcontrib><creatorcontrib>Still, Gregory</creatorcontrib><creatorcontrib>Jenkins, Keith</creatorcontrib><creatorcontrib>Friedrich, Joshua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Restle, Phillip</au><au>Shan, David</au><au>Hogenmiller, David</au><au>Yong Kim</au><au>Drake, Alan</au><au>Hibbeler, Jason</au><au>Bucelot, Thomas</au><au>Still, Gregory</au><au>Jenkins, Keith</au><au>Friedrich, Joshua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor</atitle><btitle>2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)</btitle><stitle>ISSCC</stitle><date>2014-02</date><risdate>2014</risdate><spage>100</spage><epage>101</epage><pages>100-101</pages><issn>0193-6530</issn><eissn>2376-8606</eissn><isbn>1479909181</isbn><isbn>9781479909186</isbn><eisbn>9781479909209</eisbn><eisbn>1479909203</eisbn><abstract>A resonant-clock design for the IBM POWER8 processor core was implemented with 2 resonant modes (and a non-resonant mode), saving clock power over a wide frequency range from 2.5GHz to more than 5GHz. The POWER8 microprocessor is composed of 12 chiplets, each containing a single resonant clock grid for one core and its L2 cache, and a half-frequency, non-resonant clock grid for the L3 cache. The clock grids drive the local clock buffers (LCBs) that in turn drive the latches. The LCBs are gated off to measure the global clock power from the PLL to the LCBs. The resonant core communicates synchronously with the L3, requiring low skew between the domains. The chip was designed in a 22nm SOI process, including two ultra-thick-metal (UTM) layers (3 microns thick) for power distribution, I/O, all long global clock wires, and the resonant clock inductors. The UTM technology reduces wire resistance and simplifies inductor design, but requires accurate transmission line modeling and special routing.</abstract><pub>IEEE</pub><doi>10.1109/ISSCC.2014.6757355</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0193-6530
ispartof 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, p.100-101
issn 0193-6530
2376-8606
language eng
recordid cdi_ieee_primary_6757355
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clocks
Inductors
Power measurement
Resonant frequency
Switches
Synchronization
Wires
title 5.3 Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8TM microprocessor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=5.3%20Wide-frequency-range%20resonant%20clock%20with%20on-the-fly%20mode%20changing%20for%20the%20POWER8TM%20microprocessor&rft.btitle=2014%20IEEE%20International%20Solid-State%20Circuits%20Conference%20Digest%20of%20Technical%20Papers%20(ISSCC)&rft.au=Restle,%20Phillip&rft.date=2014-02&rft.spage=100&rft.epage=101&rft.pages=100-101&rft.issn=0193-6530&rft.eissn=2376-8606&rft.isbn=1479909181&rft.isbn_list=9781479909186&rft_id=info:doi/10.1109/ISSCC.2014.6757355&rft.eisbn=9781479909209&rft.eisbn_list=1479909203&rft_dat=%3Cieee_6IE%3E6757355%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_67573553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6757355&rfr_iscdi=true