Loading…

Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile

For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2014-03, Vol.7 (3), p.917-928
Main Authors: Braun, Andreas Christian, Rojas, Carolina, Echeverri, Cristian, Rottensteiner, Franz, Bahr, Hans-Peter, Niemeyer, Joachim, Arias, Mauricio Aguayo, Kosov, Sergey, Hinz, Stefan, Weidner, Uwe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3
cites cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3
container_end_page 928
container_issue 3
container_start_page 917
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 7
creator Braun, Andreas Christian
Rojas, Carolina
Echeverri, Cristian
Rottensteiner, Franz
Bahr, Hans-Peter
Niemeyer, Joachim
Arias, Mauricio Aguayo
Kosov, Sergey
Hinz, Stefan
Weidner, Uwe
description For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.
doi_str_mv 10.1109/JSTARS.2013.2293421
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6767102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6767102</ieee_id><sourcerecordid>3248372281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-AjZNXA_2Ma8uJ4P4CImGgfXkMtxieXTGtkT590Igrs7mfOckHyEDzoacM_X0Xs2KaTUUjMuhEErGgl-RnuAJj3gik2vS40qqiMcsviV33q8ZS0WmZI_8jtCblaWtpkCrDpvgYBtVHQQDW_oJIaCzdIpNu7ImmNbSsYMd_rRuQ3Xr6NT4DS28R-93aIOnc2_sik7ALj0EOoIAUUFL8EirsF8eqLG0_DJbvCc3GrYeHy7ZJ_Px86x8jSYfL29lMYkaobIQacGyFFSaIBegYg15ptmC5WopRZ6xDBqda0hkLuNcpSJeSK2bRkquMNEgF7JPHs-7nWu_9-hDvW73zh4va56wnDGmcnlsyXOrca33DnXdObMDd6g5q0-K67Pi-qS4vig-UoMzZRDxn0izNONMyD9-yXgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508000983</pqid></control><display><type>article</type><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><source>Alma/SFX Local Collection</source><creator>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</creator><creatorcontrib>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</creatorcontrib><description>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2013.2293421</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Conditional random fields (CRFs) ; Context ; Earth ; extended morphological profiles (EMPs) ; import vector machines (IVM) ; Kernel ; kernel composition ; Landsat satellites ; Meteorology ; Remote sensing ; Satellites ; Support vector machines ; support vector machines (SVMs) ; Vegetation</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2014-03, Vol.7 (3), p.917-928</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</citedby><cites>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Braun, Andreas Christian</creatorcontrib><creatorcontrib>Rojas, Carolina</creatorcontrib><creatorcontrib>Echeverri, Cristian</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Bahr, Hans-Peter</creatorcontrib><creatorcontrib>Niemeyer, Joachim</creatorcontrib><creatorcontrib>Arias, Mauricio Aguayo</creatorcontrib><creatorcontrib>Kosov, Sergey</creatorcontrib><creatorcontrib>Hinz, Stefan</creatorcontrib><creatorcontrib>Weidner, Uwe</creatorcontrib><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</description><subject>Conditional random fields (CRFs)</subject><subject>Context</subject><subject>Earth</subject><subject>extended morphological profiles (EMPs)</subject><subject>import vector machines (IVM)</subject><subject>Kernel</subject><subject>kernel composition</subject><subject>Landsat satellites</subject><subject>Meteorology</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>Vegetation</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYj-AjZNXA_2Ma8uJ4P4CImGgfXkMtxieXTGtkT590Igrs7mfOckHyEDzoacM_X0Xs2KaTUUjMuhEErGgl-RnuAJj3gik2vS40qqiMcsviV33q8ZS0WmZI_8jtCblaWtpkCrDpvgYBtVHQQDW_oJIaCzdIpNu7ImmNbSsYMd_rRuQ3Xr6NT4DS28R-93aIOnc2_sik7ALj0EOoIAUUFL8EirsF8eqLG0_DJbvCc3GrYeHy7ZJ_Px86x8jSYfL29lMYkaobIQacGyFFSaIBegYg15ptmC5WopRZ6xDBqda0hkLuNcpSJeSK2bRkquMNEgF7JPHs-7nWu_9-hDvW73zh4va56wnDGmcnlsyXOrca33DnXdObMDd6g5q0-K67Pi-qS4vig-UoMzZRDxn0izNONMyD9-yXgm</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Braun, Andreas Christian</creator><creator>Rojas, Carolina</creator><creator>Echeverri, Cristian</creator><creator>Rottensteiner, Franz</creator><creator>Bahr, Hans-Peter</creator><creator>Niemeyer, Joachim</creator><creator>Arias, Mauricio Aguayo</creator><creator>Kosov, Sergey</creator><creator>Hinz, Stefan</creator><creator>Weidner, Uwe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><author>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Conditional random fields (CRFs)</topic><topic>Context</topic><topic>Earth</topic><topic>extended morphological profiles (EMPs)</topic><topic>import vector machines (IVM)</topic><topic>Kernel</topic><topic>kernel composition</topic><topic>Landsat satellites</topic><topic>Meteorology</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Andreas Christian</creatorcontrib><creatorcontrib>Rojas, Carolina</creatorcontrib><creatorcontrib>Echeverri, Cristian</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Bahr, Hans-Peter</creatorcontrib><creatorcontrib>Niemeyer, Joachim</creatorcontrib><creatorcontrib>Arias, Mauricio Aguayo</creatorcontrib><creatorcontrib>Kosov, Sergey</creatorcontrib><creatorcontrib>Hinz, Stefan</creatorcontrib><creatorcontrib>Weidner, Uwe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Andreas Christian</au><au>Rojas, Carolina</au><au>Echeverri, Cristian</au><au>Rottensteiner, Franz</au><au>Bahr, Hans-Peter</au><au>Niemeyer, Joachim</au><au>Arias, Mauricio Aguayo</au><au>Kosov, Sergey</au><au>Hinz, Stefan</au><au>Weidner, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>7</volume><issue>3</issue><spage>917</spage><epage>928</epage><pages>917-928</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2013.2293421</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2014-03, Vol.7 (3), p.917-928
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_6767102
source Alma/SFX Local Collection
subjects Conditional random fields (CRFs)
Context
Earth
extended morphological profiles (EMPs)
import vector machines (IVM)
Kernel
kernel composition
Landsat satellites
Meteorology
Remote sensing
Satellites
Support vector machines
support vector machines (SVMs)
Vegetation
title Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Spectral-Spatial%20Pattern%20Recognition%20Framework%20for%20Risk%20Assessments%20Using%20Landsat%20Data-A%20Case%20Study%20in%20Chile&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Braun,%20Andreas%20Christian&rft.date=2014-03-01&rft.volume=7&rft.issue=3&rft.spage=917&rft.epage=928&rft.pages=917-928&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2013.2293421&rft_dat=%3Cproquest_ieee_%3E3248372281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1508000983&rft_id=info:pmid/&rft_ieee_id=6767102&rfr_iscdi=true