Loading…
Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile
For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2014-03, Vol.7 (3), p.917-928 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3 |
container_end_page | 928 |
container_issue | 3 |
container_start_page | 917 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 7 |
creator | Braun, Andreas Christian Rojas, Carolina Echeverri, Cristian Rottensteiner, Franz Bahr, Hans-Peter Niemeyer, Joachim Arias, Mauricio Aguayo Kosov, Sergey Hinz, Stefan Weidner, Uwe |
description | For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios. |
doi_str_mv | 10.1109/JSTARS.2013.2293421 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6767102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6767102</ieee_id><sourcerecordid>3248372281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-AjZNXA_2Ma8uJ4P4CImGgfXkMtxieXTGtkT590Igrs7mfOckHyEDzoacM_X0Xs2KaTUUjMuhEErGgl-RnuAJj3gik2vS40qqiMcsviV33q8ZS0WmZI_8jtCblaWtpkCrDpvgYBtVHQQDW_oJIaCzdIpNu7ImmNbSsYMd_rRuQ3Xr6NT4DS28R-93aIOnc2_sik7ALj0EOoIAUUFL8EirsF8eqLG0_DJbvCc3GrYeHy7ZJ_Px86x8jSYfL29lMYkaobIQacGyFFSaIBegYg15ptmC5WopRZ6xDBqda0hkLuNcpSJeSK2bRkquMNEgF7JPHs-7nWu_9-hDvW73zh4va56wnDGmcnlsyXOrca33DnXdObMDd6g5q0-K67Pi-qS4vig-UoMzZRDxn0izNONMyD9-yXgm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508000983</pqid></control><display><type>article</type><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><source>Alma/SFX Local Collection</source><creator>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</creator><creatorcontrib>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</creatorcontrib><description>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2013.2293421</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Conditional random fields (CRFs) ; Context ; Earth ; extended morphological profiles (EMPs) ; import vector machines (IVM) ; Kernel ; kernel composition ; Landsat satellites ; Meteorology ; Remote sensing ; Satellites ; Support vector machines ; support vector machines (SVMs) ; Vegetation</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2014-03, Vol.7 (3), p.917-928</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</citedby><cites>FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Braun, Andreas Christian</creatorcontrib><creatorcontrib>Rojas, Carolina</creatorcontrib><creatorcontrib>Echeverri, Cristian</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Bahr, Hans-Peter</creatorcontrib><creatorcontrib>Niemeyer, Joachim</creatorcontrib><creatorcontrib>Arias, Mauricio Aguayo</creatorcontrib><creatorcontrib>Kosov, Sergey</creatorcontrib><creatorcontrib>Hinz, Stefan</creatorcontrib><creatorcontrib>Weidner, Uwe</creatorcontrib><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</description><subject>Conditional random fields (CRFs)</subject><subject>Context</subject><subject>Earth</subject><subject>extended morphological profiles (EMPs)</subject><subject>import vector machines (IVM)</subject><subject>Kernel</subject><subject>kernel composition</subject><subject>Landsat satellites</subject><subject>Meteorology</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Support vector machines</subject><subject>support vector machines (SVMs)</subject><subject>Vegetation</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYj-AjZNXA_2Ma8uJ4P4CImGgfXkMtxieXTGtkT590Igrs7mfOckHyEDzoacM_X0Xs2KaTUUjMuhEErGgl-RnuAJj3gik2vS40qqiMcsviV33q8ZS0WmZI_8jtCblaWtpkCrDpvgYBtVHQQDW_oJIaCzdIpNu7ImmNbSsYMd_rRuQ3Xr6NT4DS28R-93aIOnc2_sik7ALj0EOoIAUUFL8EirsF8eqLG0_DJbvCc3GrYeHy7ZJ_Px86x8jSYfL29lMYkaobIQacGyFFSaIBegYg15ptmC5WopRZ6xDBqda0hkLuNcpSJeSK2bRkquMNEgF7JPHs-7nWu_9-hDvW73zh4va56wnDGmcnlsyXOrca33DnXdObMDd6g5q0-K67Pi-qS4vig-UoMzZRDxn0izNONMyD9-yXgm</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Braun, Andreas Christian</creator><creator>Rojas, Carolina</creator><creator>Echeverri, Cristian</creator><creator>Rottensteiner, Franz</creator><creator>Bahr, Hans-Peter</creator><creator>Niemeyer, Joachim</creator><creator>Arias, Mauricio Aguayo</creator><creator>Kosov, Sergey</creator><creator>Hinz, Stefan</creator><creator>Weidner, Uwe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</title><author>Braun, Andreas Christian ; Rojas, Carolina ; Echeverri, Cristian ; Rottensteiner, Franz ; Bahr, Hans-Peter ; Niemeyer, Joachim ; Arias, Mauricio Aguayo ; Kosov, Sergey ; Hinz, Stefan ; Weidner, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Conditional random fields (CRFs)</topic><topic>Context</topic><topic>Earth</topic><topic>extended morphological profiles (EMPs)</topic><topic>import vector machines (IVM)</topic><topic>Kernel</topic><topic>kernel composition</topic><topic>Landsat satellites</topic><topic>Meteorology</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Support vector machines</topic><topic>support vector machines (SVMs)</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Andreas Christian</creatorcontrib><creatorcontrib>Rojas, Carolina</creatorcontrib><creatorcontrib>Echeverri, Cristian</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Bahr, Hans-Peter</creatorcontrib><creatorcontrib>Niemeyer, Joachim</creatorcontrib><creatorcontrib>Arias, Mauricio Aguayo</creatorcontrib><creatorcontrib>Kosov, Sergey</creatorcontrib><creatorcontrib>Hinz, Stefan</creatorcontrib><creatorcontrib>Weidner, Uwe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Andreas Christian</au><au>Rojas, Carolina</au><au>Echeverri, Cristian</au><au>Rottensteiner, Franz</au><au>Bahr, Hans-Peter</au><au>Niemeyer, Joachim</au><au>Arias, Mauricio Aguayo</au><au>Kosov, Sergey</au><au>Hinz, Stefan</au><au>Weidner, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>7</volume><issue>3</issue><spage>917</spage><epage>928</epage><pages>917-928</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>For many ecological applications of remote sensing, traditional multispectral data with moderate spatial and spectral resolution have to be used. Typical examples are land-use change or deforestation assessments. The study sites are frequently too large and the timespan covered too long assumes the availability of modern datasets such as very high resolution or hyperspectral data. However, in traditional datasets such as Landsat data, separability of the relevant classes is limited. A promising approach is to describe the landscape context pixels that are integrated. For this purpose, multiscale context features are computed. Then, spectral-spatial classification is employed. However, such approaches require sophisticated processing techniques. This study exemplifies these issues by designing an entire framework for exploiting context features. The framework uses kernel-based classifiers which are unified by a multiple classifier system and further improved by conditional random fields. Accuracy on three scenarios is raised between 19.0%pts and 26.6%pts. Although the framework is designed, focusing an application in Chile, it is generally enough to be applied to similar scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2013.2293421</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2014-03, Vol.7 (3), p.917-928 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_6767102 |
source | Alma/SFX Local Collection |
subjects | Conditional random fields (CRFs) Context Earth extended morphological profiles (EMPs) import vector machines (IVM) Kernel kernel composition Landsat satellites Meteorology Remote sensing Satellites Support vector machines support vector machines (SVMs) Vegetation |
title | Design of a Spectral-Spatial Pattern Recognition Framework for Risk Assessments Using Landsat Data-A Case Study in Chile |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Spectral-Spatial%20Pattern%20Recognition%20Framework%20for%20Risk%20Assessments%20Using%20Landsat%20Data-A%20Case%20Study%20in%20Chile&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Braun,%20Andreas%20Christian&rft.date=2014-03-01&rft.volume=7&rft.issue=3&rft.spage=917&rft.epage=928&rft.pages=917-928&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2013.2293421&rft_dat=%3Cproquest_ieee_%3E3248372281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-f2076a965e12a94fa87f0b089d328707acf8fa5383489624b3ffcc3319e5fa3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1508000983&rft_id=info:pmid/&rft_ieee_id=6767102&rfr_iscdi=true |