Loading…

On road vehicle make and model recognition via sparse feature coding

Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feat...

Full description

Saved in:
Bibliographic Details
Main Authors: Nazemi, A., Shafiee, M. J., Azimifar, Z.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 440
container_issue
container_start_page 436
container_title
container_volume
creator Nazemi, A.
Shafiee, M. J.
Azimifar, Z.
description Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.
doi_str_mv 10.1109/IranianMVIP.2013.6780025
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6780025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6780025</ieee_id><sourcerecordid>6780025</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3</originalsourceid><addsrcrecordid>eNotz8tKAzEUgOEICtbaJ3CTF5gxt8llKfXSgUpdqNtympzU6EymZMaCb69gV__uh48QylnNOXO3bYGcID-_ty-1YFzW2ljGRHNGrrjSRmpulTonM8G1rrQx-pIsxvGTMSa5tU7bGbnfZFoGCPSIH8l3SHv4Qgo50H4I2NGCftjnNKUh02MCOh6gjEgjwvRdkPohpLy_JhcRuhEXp87J2-PD63JVrTdP7fJuXSVumqkSTGllbOAeUQbjjEMrXVSN3DkZQXrpwTRCB7VrNESl4Y_gTJQBRQSMck5u_r8JEbeHknooP9sTWv4CBkRN3w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On road vehicle make and model recognition via sparse feature coding</title><source>IEEE Xplore All Conference Series</source><creator>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</creator><creatorcontrib>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</creatorcontrib><description>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</description><identifier>ISSN: 2166-6776</identifier><identifier>EISBN: 1467361844</identifier><identifier>EISBN: 9781467361842</identifier><identifier>EISBN: 1467361828</identifier><identifier>EISBN: 9781467361828</identifier><identifier>DOI: 10.1109/IranianMVIP.2013.6780025</identifier><language>eng</language><publisher>IEEE</publisher><subject>bag of words ; Computer vision ; Dictionaries ; Encoding ; Feature extraction ; hard vector quantization ; Image coding ; Kernel ; make and model recognition ; orthogonal matching pursuit ; sparse coding ; Vehicles</subject><ispartof>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), 2013, p.436-440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6780025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6780025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nazemi, A.</creatorcontrib><creatorcontrib>Shafiee, M. J.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><title>On road vehicle make and model recognition via sparse feature coding</title><title>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)</title><addtitle>IranianMVIP</addtitle><description>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</description><subject>bag of words</subject><subject>Computer vision</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>hard vector quantization</subject><subject>Image coding</subject><subject>Kernel</subject><subject>make and model recognition</subject><subject>orthogonal matching pursuit</subject><subject>sparse coding</subject><subject>Vehicles</subject><issn>2166-6776</issn><isbn>1467361844</isbn><isbn>9781467361842</isbn><isbn>1467361828</isbn><isbn>9781467361828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8tKAzEUgOEICtbaJ3CTF5gxt8llKfXSgUpdqNtympzU6EymZMaCb69gV__uh48QylnNOXO3bYGcID-_ty-1YFzW2ljGRHNGrrjSRmpulTonM8G1rrQx-pIsxvGTMSa5tU7bGbnfZFoGCPSIH8l3SHv4Qgo50H4I2NGCftjnNKUh02MCOh6gjEgjwvRdkPohpLy_JhcRuhEXp87J2-PD63JVrTdP7fJuXSVumqkSTGllbOAeUQbjjEMrXVSN3DkZQXrpwTRCB7VrNESl4Y_gTJQBRQSMck5u_r8JEbeHknooP9sTWv4CBkRN3w</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Nazemi, A.</creator><creator>Shafiee, M. J.</creator><creator>Azimifar, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>On road vehicle make and model recognition via sparse feature coding</title><author>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bag of words</topic><topic>Computer vision</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>hard vector quantization</topic><topic>Image coding</topic><topic>Kernel</topic><topic>make and model recognition</topic><topic>orthogonal matching pursuit</topic><topic>sparse coding</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Nazemi, A.</creatorcontrib><creatorcontrib>Shafiee, M. J.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nazemi, A.</au><au>Shafiee, M. J.</au><au>Azimifar, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On road vehicle make and model recognition via sparse feature coding</atitle><btitle>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)</btitle><stitle>IranianMVIP</stitle><date>2013-09</date><risdate>2013</risdate><spage>436</spage><epage>440</epage><pages>436-440</pages><issn>2166-6776</issn><eisbn>1467361844</eisbn><eisbn>9781467361842</eisbn><eisbn>1467361828</eisbn><eisbn>9781467361828</eisbn><abstract>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</abstract><pub>IEEE</pub><doi>10.1109/IranianMVIP.2013.6780025</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2166-6776
ispartof 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), 2013, p.436-440
issn 2166-6776
language eng
recordid cdi_ieee_primary_6780025
source IEEE Xplore All Conference Series
subjects bag of words
Computer vision
Dictionaries
Encoding
Feature extraction
hard vector quantization
Image coding
Kernel
make and model recognition
orthogonal matching pursuit
sparse coding
Vehicles
title On road vehicle make and model recognition via sparse feature coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20road%20vehicle%20make%20and%20model%20recognition%20via%20sparse%20feature%20coding&rft.btitle=2013%208th%20Iranian%20Conference%20on%20Machine%20Vision%20and%20Image%20Processing%20(MVIP)&rft.au=Nazemi,%20A.&rft.date=2013-09&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.issn=2166-6776&rft_id=info:doi/10.1109/IranianMVIP.2013.6780025&rft.eisbn=1467361844&rft.eisbn_list=9781467361842&rft.eisbn_list=1467361828&rft.eisbn_list=9781467361828&rft_dat=%3Cieee_CHZPO%3E6780025%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6780025&rfr_iscdi=true