Loading…
On road vehicle make and model recognition via sparse feature coding
Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feat...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 440 |
container_issue | |
container_start_page | 436 |
container_title | |
container_volume | |
creator | Nazemi, A. Shafiee, M. J. Azimifar, Z. |
description | Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations. |
doi_str_mv | 10.1109/IranianMVIP.2013.6780025 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6780025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6780025</ieee_id><sourcerecordid>6780025</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3</originalsourceid><addsrcrecordid>eNotz8tKAzEUgOEICtbaJ3CTF5gxt8llKfXSgUpdqNtympzU6EymZMaCb69gV__uh48QylnNOXO3bYGcID-_ty-1YFzW2ljGRHNGrrjSRmpulTonM8G1rrQx-pIsxvGTMSa5tU7bGbnfZFoGCPSIH8l3SHv4Qgo50H4I2NGCftjnNKUh02MCOh6gjEgjwvRdkPohpLy_JhcRuhEXp87J2-PD63JVrTdP7fJuXSVumqkSTGllbOAeUQbjjEMrXVSN3DkZQXrpwTRCB7VrNESl4Y_gTJQBRQSMck5u_r8JEbeHknooP9sTWv4CBkRN3w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On road vehicle make and model recognition via sparse feature coding</title><source>IEEE Xplore All Conference Series</source><creator>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</creator><creatorcontrib>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</creatorcontrib><description>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</description><identifier>ISSN: 2166-6776</identifier><identifier>EISBN: 1467361844</identifier><identifier>EISBN: 9781467361842</identifier><identifier>EISBN: 1467361828</identifier><identifier>EISBN: 9781467361828</identifier><identifier>DOI: 10.1109/IranianMVIP.2013.6780025</identifier><language>eng</language><publisher>IEEE</publisher><subject>bag of words ; Computer vision ; Dictionaries ; Encoding ; Feature extraction ; hard vector quantization ; Image coding ; Kernel ; make and model recognition ; orthogonal matching pursuit ; sparse coding ; Vehicles</subject><ispartof>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), 2013, p.436-440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6780025$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6780025$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nazemi, A.</creatorcontrib><creatorcontrib>Shafiee, M. J.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><title>On road vehicle make and model recognition via sparse feature coding</title><title>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)</title><addtitle>IranianMVIP</addtitle><description>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</description><subject>bag of words</subject><subject>Computer vision</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>hard vector quantization</subject><subject>Image coding</subject><subject>Kernel</subject><subject>make and model recognition</subject><subject>orthogonal matching pursuit</subject><subject>sparse coding</subject><subject>Vehicles</subject><issn>2166-6776</issn><isbn>1467361844</isbn><isbn>9781467361842</isbn><isbn>1467361828</isbn><isbn>9781467361828</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz8tKAzEUgOEICtbaJ3CTF5gxt8llKfXSgUpdqNtympzU6EymZMaCb69gV__uh48QylnNOXO3bYGcID-_ty-1YFzW2ljGRHNGrrjSRmpulTonM8G1rrQx-pIsxvGTMSa5tU7bGbnfZFoGCPSIH8l3SHv4Qgo50H4I2NGCftjnNKUh02MCOh6gjEgjwvRdkPohpLy_JhcRuhEXp87J2-PD63JVrTdP7fJuXSVumqkSTGllbOAeUQbjjEMrXVSN3DkZQXrpwTRCB7VrNESl4Y_gTJQBRQSMck5u_r8JEbeHknooP9sTWv4CBkRN3w</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Nazemi, A.</creator><creator>Shafiee, M. J.</creator><creator>Azimifar, Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201309</creationdate><title>On road vehicle make and model recognition via sparse feature coding</title><author>Nazemi, A. ; Shafiee, M. J. ; Azimifar, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bag of words</topic><topic>Computer vision</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>hard vector quantization</topic><topic>Image coding</topic><topic>Kernel</topic><topic>make and model recognition</topic><topic>orthogonal matching pursuit</topic><topic>sparse coding</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Nazemi, A.</creatorcontrib><creatorcontrib>Shafiee, M. J.</creatorcontrib><creatorcontrib>Azimifar, Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nazemi, A.</au><au>Shafiee, M. J.</au><au>Azimifar, Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On road vehicle make and model recognition via sparse feature coding</atitle><btitle>2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP)</btitle><stitle>IranianMVIP</stitle><date>2013-09</date><risdate>2013</risdate><spage>436</spage><epage>440</epage><pages>436-440</pages><issn>2166-6776</issn><eisbn>1467361844</eisbn><eisbn>9781467361842</eisbn><eisbn>1467361828</eisbn><eisbn>9781467361828</eisbn><abstract>Automatic vehicle Make and Model Recognition (MMR) system offers a competent way to vehicle classification and recognition systems. This paper proposes a real time while robust vehicle make and model recognition system extracting the vehicle sub-image from the background and studies some sparse feature coding methods such as Orthogonal Matching Pursuit (OMP), some variation of Sparse Coding (SC) methods and compares them to choose the best one. Our method employs the sparse feature coding methods on dense Scale-Invariant Feature Transform (SIFT) features and Support Vector Machine (SVM) for classification. The proposed system is examined by an Iranian on road vehicles dataset, which its samples are in different point of views, various weather conditions and illuminations.</abstract><pub>IEEE</pub><doi>10.1109/IranianMVIP.2013.6780025</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-6776 |
ispartof | 2013 8th Iranian Conference on Machine Vision and Image Processing (MVIP), 2013, p.436-440 |
issn | 2166-6776 |
language | eng |
recordid | cdi_ieee_primary_6780025 |
source | IEEE Xplore All Conference Series |
subjects | bag of words Computer vision Dictionaries Encoding Feature extraction hard vector quantization Image coding Kernel make and model recognition orthogonal matching pursuit sparse coding Vehicles |
title | On road vehicle make and model recognition via sparse feature coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20road%20vehicle%20make%20and%20model%20recognition%20via%20sparse%20feature%20coding&rft.btitle=2013%208th%20Iranian%20Conference%20on%20Machine%20Vision%20and%20Image%20Processing%20(MVIP)&rft.au=Nazemi,%20A.&rft.date=2013-09&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.issn=2166-6776&rft_id=info:doi/10.1109/IranianMVIP.2013.6780025&rft.eisbn=1467361844&rft.eisbn_list=9781467361842&rft.eisbn_list=1467361828&rft.eisbn_list=9781467361828&rft_dat=%3Cieee_CHZPO%3E6780025%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-2046478d1cee3d7979e839f453b93fa3c3ca7526d4b56af46a73697f3de2faef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6780025&rfr_iscdi=true |