Loading…
Predictive neural networks control in the high accuracy DC voltage reference source
In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trai...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 307 vol.1 |
container_issue | |
container_start_page | 303 |
container_title | |
container_volume | 1 |
creator | Nancovska, I. Hudoklin, D. Fefer, D. Jeglic, A. |
description | In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system. |
doi_str_mv | 10.1109/IMTC.1998.679789 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_679789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>679789</ieee_id><sourcerecordid>679789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13</originalsourceid><addsrcrecordid>eNotj11LwzAUhgMquE3vxav8gdacJm2SS6lfg4mC83pkpydbtLaSZpP9eyvz6uGFhwdexq5A5ADC3syfl3UO1pq80lYbe8KmQhsh1d86ZZPRgawsDJyz6TB8CCEqpfWEvb1GagKmsCfe0S66dkT66ePnwLHvUuxbHjqetsS3YbPlDnGU8MDvar7v2-Q2xCN5itQh8aHfRaQLduZdO9DlP2fs_eF-WT9li5fHeX27yAIIlTJTWKukaUopJWjrXYG6Ie-cxQa112tlpBOkK7W2zqCEqkBQWIIEXxoPcsauj91ARKvvGL5cPKyO_-UvqhRPxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</creator><creatorcontrib>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</creatorcontrib><description>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 0780347978</identifier><identifier>ISBN: 9780780347977</identifier><identifier>DOI: 10.1109/IMTC.1998.679789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feedback loop ; Finite impulse response filter ; Intelligent networks ; Laboratories ; Neural networks ; Particle measurements ; Predictive models ; Process control ; Stability ; Voltage control</subject><ispartof>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222), 1998, Vol.1, p.303-307 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/679789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/679789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nancovska, I.</creatorcontrib><creatorcontrib>Hudoklin, D.</creatorcontrib><creatorcontrib>Fefer, D.</creatorcontrib><creatorcontrib>Jeglic, A.</creatorcontrib><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><title>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222)</title><addtitle>IMTC</addtitle><description>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</description><subject>Feedback loop</subject><subject>Finite impulse response filter</subject><subject>Intelligent networks</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Particle measurements</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Stability</subject><subject>Voltage control</subject><issn>1091-5281</issn><isbn>0780347978</isbn><isbn>9780780347977</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAUhgMquE3vxav8gdacJm2SS6lfg4mC83pkpydbtLaSZpP9eyvz6uGFhwdexq5A5ADC3syfl3UO1pq80lYbe8KmQhsh1d86ZZPRgawsDJyz6TB8CCEqpfWEvb1GagKmsCfe0S66dkT66ePnwLHvUuxbHjqetsS3YbPlDnGU8MDvar7v2-Q2xCN5itQh8aHfRaQLduZdO9DlP2fs_eF-WT9li5fHeX27yAIIlTJTWKukaUopJWjrXYG6Ie-cxQa112tlpBOkK7W2zqCEqkBQWIIEXxoPcsauj91ARKvvGL5cPKyO_-UvqhRPxQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Nancovska, I.</creator><creator>Hudoklin, D.</creator><creator>Fefer, D.</creator><creator>Jeglic, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><author>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Feedback loop</topic><topic>Finite impulse response filter</topic><topic>Intelligent networks</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Particle measurements</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Stability</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Nancovska, I.</creatorcontrib><creatorcontrib>Hudoklin, D.</creatorcontrib><creatorcontrib>Fefer, D.</creatorcontrib><creatorcontrib>Jeglic, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nancovska, I.</au><au>Hudoklin, D.</au><au>Fefer, D.</au><au>Jeglic, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive neural networks control in the high accuracy DC voltage reference source</atitle><btitle>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222)</btitle><stitle>IMTC</stitle><date>1998</date><risdate>1998</risdate><volume>1</volume><spage>303</spage><epage>307 vol.1</epage><pages>303-307 vol.1</pages><issn>1091-5281</issn><isbn>0780347978</isbn><isbn>9780780347977</isbn><abstract>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</abstract><pub>IEEE</pub><doi>10.1109/IMTC.1998.679789</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1091-5281 |
ispartof | IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222), 1998, Vol.1, p.303-307 vol.1 |
issn | 1091-5281 |
language | eng |
recordid | cdi_ieee_primary_679789 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feedback loop Finite impulse response filter Intelligent networks Laboratories Neural networks Particle measurements Predictive models Process control Stability Voltage control |
title | Predictive neural networks control in the high accuracy DC voltage reference source |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20neural%20networks%20control%20in%20the%20high%20accuracy%20DC%20voltage%20reference%20source&rft.btitle=IMTC/98%20Conference%20Proceedings.%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference.%20Where%20Instrumentation%20is%20Going%20(Cat.%20No.98CH36222)&rft.au=Nancovska,%20I.&rft.date=1998&rft.volume=1&rft.spage=303&rft.epage=307%20vol.1&rft.pages=303-307%20vol.1&rft.issn=1091-5281&rft.isbn=0780347978&rft.isbn_list=9780780347977&rft_id=info:doi/10.1109/IMTC.1998.679789&rft_dat=%3Cieee_6IE%3E679789%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=679789&rfr_iscdi=true |