Loading…

Predictive neural networks control in the high accuracy DC voltage reference source

In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trai...

Full description

Saved in:
Bibliographic Details
Main Authors: Nancovska, I., Hudoklin, D., Fefer, D., Jeglic, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 307 vol.1
container_issue
container_start_page 303
container_title
container_volume 1
creator Nancovska, I.
Hudoklin, D.
Fefer, D.
Jeglic, A.
description In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.
doi_str_mv 10.1109/IMTC.1998.679789
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_679789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>679789</ieee_id><sourcerecordid>679789</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13</originalsourceid><addsrcrecordid>eNotj11LwzAUhgMquE3vxav8gdacJm2SS6lfg4mC83pkpydbtLaSZpP9eyvz6uGFhwdexq5A5ADC3syfl3UO1pq80lYbe8KmQhsh1d86ZZPRgawsDJyz6TB8CCEqpfWEvb1GagKmsCfe0S66dkT66ePnwLHvUuxbHjqetsS3YbPlDnGU8MDvar7v2-Q2xCN5itQh8aHfRaQLduZdO9DlP2fs_eF-WT9li5fHeX27yAIIlTJTWKukaUopJWjrXYG6Ie-cxQa112tlpBOkK7W2zqCEqkBQWIIEXxoPcsauj91ARKvvGL5cPKyO_-UvqhRPxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</creator><creatorcontrib>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</creatorcontrib><description>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</description><identifier>ISSN: 1091-5281</identifier><identifier>ISBN: 0780347978</identifier><identifier>ISBN: 9780780347977</identifier><identifier>DOI: 10.1109/IMTC.1998.679789</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feedback loop ; Finite impulse response filter ; Intelligent networks ; Laboratories ; Neural networks ; Particle measurements ; Predictive models ; Process control ; Stability ; Voltage control</subject><ispartof>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222), 1998, Vol.1, p.303-307 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/679789$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/679789$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nancovska, I.</creatorcontrib><creatorcontrib>Hudoklin, D.</creatorcontrib><creatorcontrib>Fefer, D.</creatorcontrib><creatorcontrib>Jeglic, A.</creatorcontrib><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><title>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222)</title><addtitle>IMTC</addtitle><description>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</description><subject>Feedback loop</subject><subject>Finite impulse response filter</subject><subject>Intelligent networks</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Particle measurements</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Stability</subject><subject>Voltage control</subject><issn>1091-5281</issn><isbn>0780347978</isbn><isbn>9780780347977</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj11LwzAUhgMquE3vxav8gdacJm2SS6lfg4mC83pkpydbtLaSZpP9eyvz6uGFhwdexq5A5ADC3syfl3UO1pq80lYbe8KmQhsh1d86ZZPRgawsDJyz6TB8CCEqpfWEvb1GagKmsCfe0S66dkT66ePnwLHvUuxbHjqetsS3YbPlDnGU8MDvar7v2-Q2xCN5itQh8aHfRaQLduZdO9DlP2fs_eF-WT9li5fHeX27yAIIlTJTWKukaUopJWjrXYG6Ie-cxQa112tlpBOkK7W2zqCEqkBQWIIEXxoPcsauj91ARKvvGL5cPKyO_-UvqhRPxQ</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Nancovska, I.</creator><creator>Hudoklin, D.</creator><creator>Fefer, D.</creator><creator>Jeglic, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1998</creationdate><title>Predictive neural networks control in the high accuracy DC voltage reference source</title><author>Nancovska, I. ; Hudoklin, D. ; Fefer, D. ; Jeglic, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Feedback loop</topic><topic>Finite impulse response filter</topic><topic>Intelligent networks</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Particle measurements</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Stability</topic><topic>Voltage control</topic><toplevel>online_resources</toplevel><creatorcontrib>Nancovska, I.</creatorcontrib><creatorcontrib>Hudoklin, D.</creatorcontrib><creatorcontrib>Fefer, D.</creatorcontrib><creatorcontrib>Jeglic, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nancovska, I.</au><au>Hudoklin, D.</au><au>Fefer, D.</au><au>Jeglic, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive neural networks control in the high accuracy DC voltage reference source</atitle><btitle>IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222)</btitle><stitle>IMTC</stitle><date>1998</date><risdate>1998</risdate><volume>1</volume><spage>303</spage><epage>307 vol.1</epage><pages>303-307 vol.1</pages><issn>1091-5281</issn><isbn>0780347978</isbn><isbn>9780780347977</isbn><abstract>In the paper we compare the predictive abilities of several types of neural networks in order to use them for voltage correction in a high precision solid state DC voltage reference source (DCVRS). The observed time series are characterised as outputs of nonlinear dynamical system. Networks are trained until the correlation dimension and the leading Lyapunov exponent of the predicted signals reaches the values of the same invariant measures of the observed system.</abstract><pub>IEEE</pub><doi>10.1109/IMTC.1998.679789</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1091-5281
ispartof IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222), 1998, Vol.1, p.303-307 vol.1
issn 1091-5281
language eng
recordid cdi_ieee_primary_679789
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feedback loop
Finite impulse response filter
Intelligent networks
Laboratories
Neural networks
Particle measurements
Predictive models
Process control
Stability
Voltage control
title Predictive neural networks control in the high accuracy DC voltage reference source
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20neural%20networks%20control%20in%20the%20high%20accuracy%20DC%20voltage%20reference%20source&rft.btitle=IMTC/98%20Conference%20Proceedings.%20IEEE%20Instrumentation%20and%20Measurement%20Technology%20Conference.%20Where%20Instrumentation%20is%20Going%20(Cat.%20No.98CH36222)&rft.au=Nancovska,%20I.&rft.date=1998&rft.volume=1&rft.spage=303&rft.epage=307%20vol.1&rft.pages=303-307%20vol.1&rft.issn=1091-5281&rft.isbn=0780347978&rft.isbn_list=9780780347977&rft_id=info:doi/10.1109/IMTC.1998.679789&rft_dat=%3Cieee_6IE%3E679789%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-8299438d5333179fa2c7defaa9cdc7f7b483a0e764b9a8c3162c14c5131f58f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=679789&rfr_iscdi=true