Loading…

Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon

Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of struc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2014-05, Vol.4 (3), p.866-873
Main Authors: Fenning, David P., Zuschlag, Annika S., Hofstetter, Jasmin, Frey, Alexander, Bertoni, Mariana I., Hahn, Giso, Buonassisi, Tonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3
cites cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3
container_end_page 873
container_issue 3
container_start_page 866
container_title IEEE journal of photovoltaics
container_volume 4
creator Fenning, David P.
Zuschlag, Annika S.
Hofstetter, Jasmin
Frey, Alexander
Bertoni, Mariana I.
Hahn, Giso
Buonassisi, Tonio
description Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.
doi_str_mv 10.1109/JPHOTOV.2014.2312485
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6800148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6800148</ieee_id><sourcerecordid>3931976741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEhPsF8AhEueOpEnT9jhtwIaKNonBNeqHs2Vqk5GkSLvzw-nUgS_24Xlt-QmCe4InhODs8XW9WG1Wn5MIEzaJKIlYGl8Eo4jEPKQM08u_mabkOhg7t8d9cRxzzkbBz1J_g_NqW3hlNDIS5UqCVy2EuWqVV3qL5iCh8g5NpQeLFmq7CzfQHsAWvrOA1jvjDjtjO4fmSsrOnRYpPYBLa3Q4M9qD9uita7yq7NH5ommUBvSuGlUZfRtcyaJxMD73m-Dj-WkzW4T56mU5m-ZhRVnsQyjriANjjKacEV7WWZZGqSQEEk6qsiwZx5xnZUVKWmBaJzwhktcxJiWjFQZ6EzwMew_WfHX922JvOqv7k4IkcdaLo5T1FBuoyhrnLEhxsKot7FEQLE7KxVm5OCkXZ-V97G6IKQD4j_AU91BKfwEjEX-B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485334</pqid></control><display><type>article</type><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><source>IEEE Xplore (Online service)</source><creator>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</creator><creatorcontrib>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</creatorcontrib><description>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2014.2312485</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dislocation density ; Gettering ; Imaging ; Iron ; iron gettering ; minority-carrier lifetime ; Phosphorus ; phosphorus diffusion ; Silicon ; silicon solar cells ; Solar energy ; Temperature measurement</subject><ispartof>IEEE journal of photovoltaics, 2014-05, Vol.4 (3), p.866-873</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</citedby><cites>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6800148$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Zuschlag, Annika S.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Frey, Alexander</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hahn, Giso</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</description><subject>Dislocation density</subject><subject>Gettering</subject><subject>Imaging</subject><subject>Iron</subject><subject>iron gettering</subject><subject>minority-carrier lifetime</subject><subject>Phosphorus</subject><subject>phosphorus diffusion</subject><subject>Silicon</subject><subject>silicon solar cells</subject><subject>Solar energy</subject><subject>Temperature measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhisEEhPsF8AhEueOpEnT9jhtwIaKNonBNeqHs2Vqk5GkSLvzw-nUgS_24Xlt-QmCe4InhODs8XW9WG1Wn5MIEzaJKIlYGl8Eo4jEPKQM08u_mabkOhg7t8d9cRxzzkbBz1J_g_NqW3hlNDIS5UqCVy2EuWqVV3qL5iCh8g5NpQeLFmq7CzfQHsAWvrOA1jvjDjtjO4fmSsrOnRYpPYBLa3Q4M9qD9uita7yq7NH5ommUBvSuGlUZfRtcyaJxMD73m-Dj-WkzW4T56mU5m-ZhRVnsQyjriANjjKacEV7WWZZGqSQEEk6qsiwZx5xnZUVKWmBaJzwhktcxJiWjFQZ6EzwMew_WfHX922JvOqv7k4IkcdaLo5T1FBuoyhrnLEhxsKot7FEQLE7KxVm5OCkXZ-V97G6IKQD4j_AU91BKfwEjEX-B</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Fenning, David P.</creator><creator>Zuschlag, Annika S.</creator><creator>Hofstetter, Jasmin</creator><creator>Frey, Alexander</creator><creator>Bertoni, Mariana I.</creator><creator>Hahn, Giso</creator><creator>Buonassisi, Tonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><author>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dislocation density</topic><topic>Gettering</topic><topic>Imaging</topic><topic>Iron</topic><topic>iron gettering</topic><topic>minority-carrier lifetime</topic><topic>Phosphorus</topic><topic>phosphorus diffusion</topic><topic>Silicon</topic><topic>silicon solar cells</topic><topic>Solar energy</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Zuschlag, Annika S.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Frey, Alexander</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hahn, Giso</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenning, David P.</au><au>Zuschlag, Annika S.</au><au>Hofstetter, Jasmin</au><au>Frey, Alexander</au><au>Bertoni, Mariana I.</au><au>Hahn, Giso</au><au>Buonassisi, Tonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>4</volume><issue>3</issue><spage>866</spage><epage>873</epage><pages>866-873</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2014.2312485</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2014-05, Vol.4 (3), p.866-873
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_6800148
source IEEE Xplore (Online service)
subjects Dislocation density
Gettering
Imaging
Iron
iron gettering
minority-carrier lifetime
Phosphorus
phosphorus diffusion
Silicon
silicon solar cells
Solar energy
Temperature measurement
title Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Lifetime-Limiting%20Defects%20After%20High-Temperature%20Phosphorus%20Diffusion%20in%20High-Iron-Content%20Multicrystalline%20Silicon&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Fenning,%20David%20P.&rft.date=2014-05-01&rft.volume=4&rft.issue=3&rft.spage=866&rft.epage=873&rft.pages=866-873&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2014.2312485&rft_dat=%3Cproquest_ieee_%3E3931976741%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759485334&rft_id=info:pmid/&rft_ieee_id=6800148&rfr_iscdi=true