Loading…
Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon
Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of struc...
Saved in:
Published in: | IEEE journal of photovoltaics 2014-05, Vol.4 (3), p.866-873 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3 |
container_end_page | 873 |
container_issue | 3 |
container_start_page | 866 |
container_title | IEEE journal of photovoltaics |
container_volume | 4 |
creator | Fenning, David P. Zuschlag, Annika S. Hofstetter, Jasmin Frey, Alexander Bertoni, Mariana I. Hahn, Giso Buonassisi, Tonio |
description | Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime. |
doi_str_mv | 10.1109/JPHOTOV.2014.2312485 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6800148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6800148</ieee_id><sourcerecordid>3931976741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhisEEhPsF8AhEueOpEnT9jhtwIaKNonBNeqHs2Vqk5GkSLvzw-nUgS_24Xlt-QmCe4InhODs8XW9WG1Wn5MIEzaJKIlYGl8Eo4jEPKQM08u_mabkOhg7t8d9cRxzzkbBz1J_g_NqW3hlNDIS5UqCVy2EuWqVV3qL5iCh8g5NpQeLFmq7CzfQHsAWvrOA1jvjDjtjO4fmSsrOnRYpPYBLa3Q4M9qD9uita7yq7NH5ommUBvSuGlUZfRtcyaJxMD73m-Dj-WkzW4T56mU5m-ZhRVnsQyjriANjjKacEV7WWZZGqSQEEk6qsiwZx5xnZUVKWmBaJzwhktcxJiWjFQZ6EzwMew_WfHX922JvOqv7k4IkcdaLo5T1FBuoyhrnLEhxsKot7FEQLE7KxVm5OCkXZ-V97G6IKQD4j_AU91BKfwEjEX-B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485334</pqid></control><display><type>article</type><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><source>IEEE Xplore (Online service)</source><creator>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</creator><creatorcontrib>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</creatorcontrib><description>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2014.2312485</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Dislocation density ; Gettering ; Imaging ; Iron ; iron gettering ; minority-carrier lifetime ; Phosphorus ; phosphorus diffusion ; Silicon ; silicon solar cells ; Solar energy ; Temperature measurement</subject><ispartof>IEEE journal of photovoltaics, 2014-05, Vol.4 (3), p.866-873</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</citedby><cites>FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6800148$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Zuschlag, Annika S.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Frey, Alexander</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hahn, Giso</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</description><subject>Dislocation density</subject><subject>Gettering</subject><subject>Imaging</subject><subject>Iron</subject><subject>iron gettering</subject><subject>minority-carrier lifetime</subject><subject>Phosphorus</subject><subject>phosphorus diffusion</subject><subject>Silicon</subject><subject>silicon solar cells</subject><subject>Solar energy</subject><subject>Temperature measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhisEEhPsF8AhEueOpEnT9jhtwIaKNonBNeqHs2Vqk5GkSLvzw-nUgS_24Xlt-QmCe4InhODs8XW9WG1Wn5MIEzaJKIlYGl8Eo4jEPKQM08u_mabkOhg7t8d9cRxzzkbBz1J_g_NqW3hlNDIS5UqCVy2EuWqVV3qL5iCh8g5NpQeLFmq7CzfQHsAWvrOA1jvjDjtjO4fmSsrOnRYpPYBLa3Q4M9qD9uita7yq7NH5ommUBvSuGlUZfRtcyaJxMD73m-Dj-WkzW4T56mU5m-ZhRVnsQyjriANjjKacEV7WWZZGqSQEEk6qsiwZx5xnZUVKWmBaJzwhktcxJiWjFQZ6EzwMew_WfHX922JvOqv7k4IkcdaLo5T1FBuoyhrnLEhxsKot7FEQLE7KxVm5OCkXZ-V97G6IKQD4j_AU91BKfwEjEX-B</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Fenning, David P.</creator><creator>Zuschlag, Annika S.</creator><creator>Hofstetter, Jasmin</creator><creator>Frey, Alexander</creator><creator>Bertoni, Mariana I.</creator><creator>Hahn, Giso</creator><creator>Buonassisi, Tonio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</title><author>Fenning, David P. ; Zuschlag, Annika S. ; Hofstetter, Jasmin ; Frey, Alexander ; Bertoni, Mariana I. ; Hahn, Giso ; Buonassisi, Tonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dislocation density</topic><topic>Gettering</topic><topic>Imaging</topic><topic>Iron</topic><topic>iron gettering</topic><topic>minority-carrier lifetime</topic><topic>Phosphorus</topic><topic>phosphorus diffusion</topic><topic>Silicon</topic><topic>silicon solar cells</topic><topic>Solar energy</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenning, David P.</creatorcontrib><creatorcontrib>Zuschlag, Annika S.</creatorcontrib><creatorcontrib>Hofstetter, Jasmin</creatorcontrib><creatorcontrib>Frey, Alexander</creatorcontrib><creatorcontrib>Bertoni, Mariana I.</creatorcontrib><creatorcontrib>Hahn, Giso</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenning, David P.</au><au>Zuschlag, Annika S.</au><au>Hofstetter, Jasmin</au><au>Frey, Alexander</au><au>Bertoni, Mariana I.</au><au>Hahn, Giso</au><au>Buonassisi, Tonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>4</volume><issue>3</issue><spage>866</spage><epage>873</epage><pages>866-873</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Phosphorus diffusion gettering of multicrystalline silicon solar cell materials generally fails to produce material with minority-carrier lifetimes that approach that of gettered monocrystalline wafers, due largely to higher levels of contamination with metal impurities and a higher density of structural defects. Higher gettering temperatures should speed the dissolution of precipitated metals by increasing their diffusivity and solubility in the bulk, potentially allowing for improved gettering. In this paper, we investigate the impact of gettering at higher temperatures on low-purity multicrystalline samples. To analyze the gettering response, we measure the spatially resolved lifetime and interstitial iron concentration by microwave photoconductance decay and photoluminescence imaging, and the structural defect density by Sopori etching and large-area automated quantification. Higher temperature phosphorus diffusion gettering is seen to improve metal-limited multicrystalline materials dramatically, especially in areas of low etch pit density. In areas of high as-grown dislocation density in the multicrystalline materials, it appears that higher temperature phosphorus diffusion gettering reduces the etch pit density, but leaves higher local concentrations of interstitial iron, which degrade lifetime.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2014.2312485</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2014-05, Vol.4 (3), p.866-873 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_ieee_primary_6800148 |
source | IEEE Xplore (Online service) |
subjects | Dislocation density Gettering Imaging Iron iron gettering minority-carrier lifetime Phosphorus phosphorus diffusion Silicon silicon solar cells Solar energy Temperature measurement |
title | Investigation of Lifetime-Limiting Defects After High-Temperature Phosphorus Diffusion in High-Iron-Content Multicrystalline Silicon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Lifetime-Limiting%20Defects%20After%20High-Temperature%20Phosphorus%20Diffusion%20in%20High-Iron-Content%20Multicrystalline%20Silicon&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Fenning,%20David%20P.&rft.date=2014-05-01&rft.volume=4&rft.issue=3&rft.spage=866&rft.epage=873&rft.pages=866-873&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2014.2312485&rft_dat=%3Cproquest_ieee_%3E3931976741%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-ebd26e444386416bd99828f11e761cbbb460669bc1b3a03d7671f6d501b43c0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1759485334&rft_id=info:pmid/&rft_ieee_id=6800148&rfr_iscdi=true |