Loading…
Bit-Flipping Scan - A unified architecture for fault tolerance and offline test
Test is an essential task since the early days of digital circuits. Every produced chip undergoes at least a production test supported by on-chip test infrastructure to reduce test cost. Throughout the technology evolution fault tolerance gained importance and is now necessary in many applications t...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Test is an essential task since the early days of digital circuits. Every produced chip undergoes at least a production test supported by on-chip test infrastructure to reduce test cost. Throughout the technology evolution fault tolerance gained importance and is now necessary in many applications to mitigate soft errors threatening consistent operation. While a variety of effective solutions exists to tackle both areas, test and fault tolerance are often implemented orthogonally, and hence do not exploit the potential synergies of a combined solution. The unified architecture presented here facilitates fault tolerance and test by combining a checksum of the sequential state with the ability to flip arbitrary bits. Experimental results confirm a reduced area overhead compared to a orthogonal combination of classical test and fault tolerance schemes. In combination with heuristically generated test sequences the test application time and test data volume are reduced significantly. |
---|---|
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.7873/DATE.2014.206 |