Loading…
Diagnosis-Oriented Alarm Correlations
Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 179 |
container_issue | |
container_start_page | 172 |
container_title | |
container_volume | 1 |
creator | Dalin Zhang Dahai Jin Yunzhan Gong Hailong Zhang |
description | Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually. |
doi_str_mv | 10.1109/APSEC.2013.33 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6805404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805404</ieee_id><sourcerecordid>6805404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083</originalsourceid><addsrcrecordid>eNotjj1PwzAUAA0CibQwMrF0YXR4z89O7DEK5UOqVCRgrpz4FRmlCbKz8O-pRJe77XRC3CKUiOAemrf3dVsqQCqJzsQCde2cQq3hXBSq0iChRnMhCjQEEqlSV2KR8zeAAg2mEPeP0X-NU45ZblPkceawagafDqt2SokHP8dpzNficu-HzDcnL8Xn0_qjfZGb7fNr22xkxNrMkgIFr8FWmirQrDrHxJ3qj6h61Vl_fEGHBOwwBAjKWlIWg-nQ9HuwtBR3_93IzLufFA8-_e4qC0aDpj-EaD9T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Diagnosis-Oriented Alarm Correlations</title><source>IEEE Xplore All Conference Series</source><creator>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</creator><creatorcontrib>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</creatorcontrib><description>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</description><identifier>ISSN: 1530-1362</identifier><identifier>EISSN: 2640-0715</identifier><identifier>EISBN: 1479921440</identifier><identifier>EISBN: 9781479921430</identifier><identifier>EISBN: 1479921432</identifier><identifier>EISBN: 9781479921447</identifier><identifier>DOI: 10.1109/APSEC.2013.33</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstract interpretation ; Abstracts ; Alarm correlations ; Algorithm design and analysis ; Approximation methods ; Concrete ; Correlation ; Diagnosis ; Inspection ; Semantic slicing ; Semantics ; State slicing</subject><ispartof>2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2013, Vol.1, p.172-179</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dalin Zhang</creatorcontrib><creatorcontrib>Dahai Jin</creatorcontrib><creatorcontrib>Yunzhan Gong</creatorcontrib><creatorcontrib>Hailong Zhang</creatorcontrib><title>Diagnosis-Oriented Alarm Correlations</title><title>2013 20th Asia-Pacific Software Engineering Conference (APSEC)</title><addtitle>apsec</addtitle><description>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</description><subject>Abstract interpretation</subject><subject>Abstracts</subject><subject>Alarm correlations</subject><subject>Algorithm design and analysis</subject><subject>Approximation methods</subject><subject>Concrete</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>Inspection</subject><subject>Semantic slicing</subject><subject>Semantics</subject><subject>State slicing</subject><issn>1530-1362</issn><issn>2640-0715</issn><isbn>1479921440</isbn><isbn>9781479921430</isbn><isbn>1479921432</isbn><isbn>9781479921447</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjj1PwzAUAA0CibQwMrF0YXR4z89O7DEK5UOqVCRgrpz4FRmlCbKz8O-pRJe77XRC3CKUiOAemrf3dVsqQCqJzsQCde2cQq3hXBSq0iChRnMhCjQEEqlSV2KR8zeAAg2mEPeP0X-NU45ZblPkceawagafDqt2SokHP8dpzNficu-HzDcnL8Xn0_qjfZGb7fNr22xkxNrMkgIFr8FWmirQrDrHxJ3qj6h61Vl_fEGHBOwwBAjKWlIWg-nQ9HuwtBR3_93IzLufFA8-_e4qC0aDpj-EaD9T</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Dalin Zhang</creator><creator>Dahai Jin</creator><creator>Yunzhan Gong</creator><creator>Hailong Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201312</creationdate><title>Diagnosis-Oriented Alarm Correlations</title><author>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstract interpretation</topic><topic>Abstracts</topic><topic>Alarm correlations</topic><topic>Algorithm design and analysis</topic><topic>Approximation methods</topic><topic>Concrete</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>Inspection</topic><topic>Semantic slicing</topic><topic>Semantics</topic><topic>State slicing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dalin Zhang</creatorcontrib><creatorcontrib>Dahai Jin</creatorcontrib><creatorcontrib>Yunzhan Gong</creatorcontrib><creatorcontrib>Hailong Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalin Zhang</au><au>Dahai Jin</au><au>Yunzhan Gong</au><au>Hailong Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Diagnosis-Oriented Alarm Correlations</atitle><btitle>2013 20th Asia-Pacific Software Engineering Conference (APSEC)</btitle><stitle>apsec</stitle><date>2013-12</date><risdate>2013</risdate><volume>1</volume><spage>172</spage><epage>179</epage><pages>172-179</pages><issn>1530-1362</issn><eissn>2640-0715</eissn><eisbn>1479921440</eisbn><eisbn>9781479921430</eisbn><eisbn>1479921432</eisbn><eisbn>9781479921447</eisbn><coden>IEEPAD</coden><abstract>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</abstract><pub>IEEE</pub><doi>10.1109/APSEC.2013.33</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-1362 |
ispartof | 2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2013, Vol.1, p.172-179 |
issn | 1530-1362 2640-0715 |
language | eng |
recordid | cdi_ieee_primary_6805404 |
source | IEEE Xplore All Conference Series |
subjects | Abstract interpretation Abstracts Alarm correlations Algorithm design and analysis Approximation methods Concrete Correlation Diagnosis Inspection Semantic slicing Semantics State slicing |
title | Diagnosis-Oriented Alarm Correlations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Diagnosis-Oriented%20Alarm%20Correlations&rft.btitle=2013%2020th%20Asia-Pacific%20Software%20Engineering%20Conference%20(APSEC)&rft.au=Dalin%20Zhang&rft.date=2013-12&rft.volume=1&rft.spage=172&rft.epage=179&rft.pages=172-179&rft.issn=1530-1362&rft.eissn=2640-0715&rft.coden=IEEPAD&rft_id=info:doi/10.1109/APSEC.2013.33&rft.eisbn=1479921440&rft.eisbn_list=9781479921430&rft.eisbn_list=1479921432&rft.eisbn_list=9781479921447&rft_dat=%3Cieee_CHZPO%3E6805404%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6805404&rfr_iscdi=true |