Loading…

Diagnosis-Oriented Alarm Correlations

Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the...

Full description

Saved in:
Bibliographic Details
Main Authors: Dalin Zhang, Dahai Jin, Yunzhan Gong, Hailong Zhang
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 179
container_issue
container_start_page 172
container_title
container_volume 1
creator Dalin Zhang
Dahai Jin
Yunzhan Gong
Hailong Zhang
description Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.
doi_str_mv 10.1109/APSEC.2013.33
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6805404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805404</ieee_id><sourcerecordid>6805404</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083</originalsourceid><addsrcrecordid>eNotjj1PwzAUAA0CibQwMrF0YXR4z89O7DEK5UOqVCRgrpz4FRmlCbKz8O-pRJe77XRC3CKUiOAemrf3dVsqQCqJzsQCde2cQq3hXBSq0iChRnMhCjQEEqlSV2KR8zeAAg2mEPeP0X-NU45ZblPkceawagafDqt2SokHP8dpzNficu-HzDcnL8Xn0_qjfZGb7fNr22xkxNrMkgIFr8FWmirQrDrHxJ3qj6h61Vl_fEGHBOwwBAjKWlIWg-nQ9HuwtBR3_93IzLufFA8-_e4qC0aDpj-EaD9T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Diagnosis-Oriented Alarm Correlations</title><source>IEEE Xplore All Conference Series</source><creator>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</creator><creatorcontrib>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</creatorcontrib><description>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</description><identifier>ISSN: 1530-1362</identifier><identifier>EISSN: 2640-0715</identifier><identifier>EISBN: 1479921440</identifier><identifier>EISBN: 9781479921430</identifier><identifier>EISBN: 1479921432</identifier><identifier>EISBN: 9781479921447</identifier><identifier>DOI: 10.1109/APSEC.2013.33</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstract interpretation ; Abstracts ; Alarm correlations ; Algorithm design and analysis ; Approximation methods ; Concrete ; Correlation ; Diagnosis ; Inspection ; Semantic slicing ; Semantics ; State slicing</subject><ispartof>2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2013, Vol.1, p.172-179</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805404$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805404$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dalin Zhang</creatorcontrib><creatorcontrib>Dahai Jin</creatorcontrib><creatorcontrib>Yunzhan Gong</creatorcontrib><creatorcontrib>Hailong Zhang</creatorcontrib><title>Diagnosis-Oriented Alarm Correlations</title><title>2013 20th Asia-Pacific Software Engineering Conference (APSEC)</title><addtitle>apsec</addtitle><description>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</description><subject>Abstract interpretation</subject><subject>Abstracts</subject><subject>Alarm correlations</subject><subject>Algorithm design and analysis</subject><subject>Approximation methods</subject><subject>Concrete</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>Inspection</subject><subject>Semantic slicing</subject><subject>Semantics</subject><subject>State slicing</subject><issn>1530-1362</issn><issn>2640-0715</issn><isbn>1479921440</isbn><isbn>9781479921430</isbn><isbn>1479921432</isbn><isbn>9781479921447</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjj1PwzAUAA0CibQwMrF0YXR4z89O7DEK5UOqVCRgrpz4FRmlCbKz8O-pRJe77XRC3CKUiOAemrf3dVsqQCqJzsQCde2cQq3hXBSq0iChRnMhCjQEEqlSV2KR8zeAAg2mEPeP0X-NU45ZblPkceawagafDqt2SokHP8dpzNficu-HzDcnL8Xn0_qjfZGb7fNr22xkxNrMkgIFr8FWmirQrDrHxJ3qj6h61Vl_fEGHBOwwBAjKWlIWg-nQ9HuwtBR3_93IzLufFA8-_e4qC0aDpj-EaD9T</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Dalin Zhang</creator><creator>Dahai Jin</creator><creator>Yunzhan Gong</creator><creator>Hailong Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201312</creationdate><title>Diagnosis-Oriented Alarm Correlations</title><author>Dalin Zhang ; Dahai Jin ; Yunzhan Gong ; Hailong Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstract interpretation</topic><topic>Abstracts</topic><topic>Alarm correlations</topic><topic>Algorithm design and analysis</topic><topic>Approximation methods</topic><topic>Concrete</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>Inspection</topic><topic>Semantic slicing</topic><topic>Semantics</topic><topic>State slicing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dalin Zhang</creatorcontrib><creatorcontrib>Dahai Jin</creatorcontrib><creatorcontrib>Yunzhan Gong</creatorcontrib><creatorcontrib>Hailong Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalin Zhang</au><au>Dahai Jin</au><au>Yunzhan Gong</au><au>Hailong Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Diagnosis-Oriented Alarm Correlations</atitle><btitle>2013 20th Asia-Pacific Software Engineering Conference (APSEC)</btitle><stitle>apsec</stitle><date>2013-12</date><risdate>2013</risdate><volume>1</volume><spage>172</spage><epage>179</epage><pages>172-179</pages><issn>1530-1362</issn><eissn>2640-0715</eissn><eisbn>1479921440</eisbn><eisbn>9781479921430</eisbn><eisbn>1479921432</eisbn><eisbn>9781479921447</eisbn><coden>IEEPAD</coden><abstract>Defect detection generally includes two stages: static analysis and alarm inspection. Helping the user in the alarm inspection task is a major challenge for current static analyzers. A large number of independent alarms are against the understanding and may lead developers and managers to reject the use of static analysis tools due to the overhead of alarm inspection. To help with the inspection tasks, we formally introduce alarm correlations. If the occurrence of one alarm causes another alarm to occur, we say they are correlated. We propose a framework for the investigation of the alarms, so as to help classifying them by their correlations. The underlying algorithms were implemented inside our static analysis tool. We choose one common semantic alarm as case study and proved that our method has the effect of reducing 33.1% of alarm identification. Using correlation information, we are able to automate alarm identification that previously had to be done manually.</abstract><pub>IEEE</pub><doi>10.1109/APSEC.2013.33</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-1362
ispartof 2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2013, Vol.1, p.172-179
issn 1530-1362
2640-0715
language eng
recordid cdi_ieee_primary_6805404
source IEEE Xplore All Conference Series
subjects Abstract interpretation
Abstracts
Alarm correlations
Algorithm design and analysis
Approximation methods
Concrete
Correlation
Diagnosis
Inspection
Semantic slicing
Semantics
State slicing
title Diagnosis-Oriented Alarm Correlations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Diagnosis-Oriented%20Alarm%20Correlations&rft.btitle=2013%2020th%20Asia-Pacific%20Software%20Engineering%20Conference%20(APSEC)&rft.au=Dalin%20Zhang&rft.date=2013-12&rft.volume=1&rft.spage=172&rft.epage=179&rft.pages=172-179&rft.issn=1530-1362&rft.eissn=2640-0715&rft.coden=IEEPAD&rft_id=info:doi/10.1109/APSEC.2013.33&rft.eisbn=1479921440&rft.eisbn_list=9781479921430&rft.eisbn_list=1479921432&rft.eisbn_list=9781479921447&rft_dat=%3Cieee_CHZPO%3E6805404%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-3d3da408643604e2b9e3eb2c3eb6c2b8a71519130e91dd0d2883281d5b15cf083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6805404&rfr_iscdi=true