Loading…
Generating Statistic Application Signatures for Inference of Unknown Applications
In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 245 |
container_issue | |
container_start_page | 241 |
container_title | |
container_volume | |
creator | Jian-Zhen Luo Shun-Zheng Yu |
description | In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic. |
doi_str_mv | 10.1109/GCIS.2013.45 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6805942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6805942</ieee_id><sourcerecordid>6805942</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9642df27dcab10358ce8b8f72c8e182368ea89e2400f79154c3524c198f03df33</originalsourceid><addsrcrecordid>eNpNjMtKA0EQRdsXqDE7d276ByZW9bN6GYLGQEAkZh0mnerQGnvCzIj49wZ84OpwOYcrxDXCCBHC7XQyW4wUoB4ZeyQu0fgQFJGDY3Gh0NrKQcATMQyefp0Np3-O9LkYdt0LAGBw3jl3IZ6mXLit-1y2ctEf2PU5yvF-v8vxsJoiF3lb6v695U6mppWzkrjlElk2SS7La2k-yv--uxJnqd51PPzhQCzv754nD9X8cTqbjOdVRm_7KjijNkn5TazXCNpSZFpT8ioSIyntiGsKrAxA8gGtidoqEzFQAr1JWg_EzfdvZubVvs1vdfu5cgQ2GKW_AHCmU4Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generating Statistic Application Signatures for Inference of Unknown Applications</title><source>IEEE Xplore All Conference Series</source><creator>Jian-Zhen Luo ; Shun-Zheng Yu</creator><creatorcontrib>Jian-Zhen Luo ; Shun-Zheng Yu</creatorcontrib><description>In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.</description><identifier>ISSN: 2155-6083</identifier><identifier>ISBN: 9781479928859</identifier><identifier>ISBN: 1479928852</identifier><identifier>EISSN: 2155-6091</identifier><identifier>EISBN: 1479928860</identifier><identifier>EISBN: 9781479928866</identifier><identifier>DOI: 10.1109/GCIS.2013.45</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application Signature ; Data mining ; Entropy ; Internet ; Probabilistic logic ; Probabilistic Prefix Tree Acceptor ; Protocol Keyword Extraction ; Protocols ; Reverse engineering ; Traffic Analysis ; Unknown Application Inference ; World Wide Web</subject><ispartof>2013 Fourth Global Congress on Intelligent Systems, 2013, p.241-245</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6805942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54553,54918,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6805942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Zhen Luo</creatorcontrib><creatorcontrib>Shun-Zheng Yu</creatorcontrib><title>Generating Statistic Application Signatures for Inference of Unknown Applications</title><title>2013 Fourth Global Congress on Intelligent Systems</title><addtitle>gcis</addtitle><description>In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.</description><subject>Application Signature</subject><subject>Data mining</subject><subject>Entropy</subject><subject>Internet</subject><subject>Probabilistic logic</subject><subject>Probabilistic Prefix Tree Acceptor</subject><subject>Protocol Keyword Extraction</subject><subject>Protocols</subject><subject>Reverse engineering</subject><subject>Traffic Analysis</subject><subject>Unknown Application Inference</subject><subject>World Wide Web</subject><issn>2155-6083</issn><issn>2155-6091</issn><isbn>9781479928859</isbn><isbn>1479928852</isbn><isbn>1479928860</isbn><isbn>9781479928866</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjMtKA0EQRdsXqDE7d276ByZW9bN6GYLGQEAkZh0mnerQGnvCzIj49wZ84OpwOYcrxDXCCBHC7XQyW4wUoB4ZeyQu0fgQFJGDY3Gh0NrKQcATMQyefp0Np3-O9LkYdt0LAGBw3jl3IZ6mXLit-1y2ctEf2PU5yvF-v8vxsJoiF3lb6v695U6mppWzkrjlElk2SS7La2k-yv--uxJnqd51PPzhQCzv754nD9X8cTqbjOdVRm_7KjijNkn5TazXCNpSZFpT8ioSIyntiGsKrAxA8gGtidoqEzFQAr1JWg_EzfdvZubVvs1vdfu5cgQ2GKW_AHCmU4Y</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Jian-Zhen Luo</creator><creator>Shun-Zheng Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201312</creationdate><title>Generating Statistic Application Signatures for Inference of Unknown Applications</title><author>Jian-Zhen Luo ; Shun-Zheng Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9642df27dcab10358ce8b8f72c8e182368ea89e2400f79154c3524c198f03df33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Application Signature</topic><topic>Data mining</topic><topic>Entropy</topic><topic>Internet</topic><topic>Probabilistic logic</topic><topic>Probabilistic Prefix Tree Acceptor</topic><topic>Protocol Keyword Extraction</topic><topic>Protocols</topic><topic>Reverse engineering</topic><topic>Traffic Analysis</topic><topic>Unknown Application Inference</topic><topic>World Wide Web</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Zhen Luo</creatorcontrib><creatorcontrib>Shun-Zheng Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Zhen Luo</au><au>Shun-Zheng Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generating Statistic Application Signatures for Inference of Unknown Applications</atitle><btitle>2013 Fourth Global Congress on Intelligent Systems</btitle><stitle>gcis</stitle><date>2013-12</date><risdate>2013</risdate><spage>241</spage><epage>245</epage><pages>241-245</pages><issn>2155-6083</issn><eissn>2155-6091</eissn><isbn>9781479928859</isbn><isbn>1479928852</isbn><eisbn>1479928860</eisbn><eisbn>9781479928866</eisbn><coden>IEEPAD</coden><abstract>In this paper, we propose a novel approach of protocol reverse engineering to extract protocol keywords of unknown application from raw network traffic data without a prior knowledge about the application based on compression theory, entropy and variance analysis. We also present an efficient method to generate statistic signature of unknown application leveraging machine learning and probabilistic models. The experiment results show that our approach extract protocol keywords of application in high accuracy, the false positive and false negative of application identification using our method are very low. Our technique can also discover new application in unknown traffic.</abstract><pub>IEEE</pub><doi>10.1109/GCIS.2013.45</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2155-6083 |
ispartof | 2013 Fourth Global Congress on Intelligent Systems, 2013, p.241-245 |
issn | 2155-6083 2155-6091 |
language | eng |
recordid | cdi_ieee_primary_6805942 |
source | IEEE Xplore All Conference Series |
subjects | Application Signature Data mining Entropy Internet Probabilistic logic Probabilistic Prefix Tree Acceptor Protocol Keyword Extraction Protocols Reverse engineering Traffic Analysis Unknown Application Inference World Wide Web |
title | Generating Statistic Application Signatures for Inference of Unknown Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generating%20Statistic%20Application%20Signatures%20for%20Inference%20of%20Unknown%20Applications&rft.btitle=2013%20Fourth%20Global%20Congress%20on%20Intelligent%20Systems&rft.au=Jian-Zhen%20Luo&rft.date=2013-12&rft.spage=241&rft.epage=245&rft.pages=241-245&rft.issn=2155-6083&rft.eissn=2155-6091&rft.isbn=9781479928859&rft.isbn_list=1479928852&rft.coden=IEEPAD&rft_id=info:doi/10.1109/GCIS.2013.45&rft.eisbn=1479928860&rft.eisbn_list=9781479928866&rft_dat=%3Cieee_CHZPO%3E6805942%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9642df27dcab10358ce8b8f72c8e182368ea89e2400f79154c3524c198f03df33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6805942&rfr_iscdi=true |