Loading…
Wide frequency band assessment of 28 nm FDSOI technology platform for analogue and RF applications
This work presents an in-depth wide-frequency band assessment of 28 nm FDSOI MOSFETs for analogue and RF applications. The focus is mainly on such figures of merit (FoM) as the transconductance g m , the output conductance g d , the intrinsic gain A v and the cut-off frequencies f t and f max . Firs...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents an in-depth wide-frequency band assessment of 28 nm FDSOI MOSFETs for analogue and RF applications. The focus is mainly on such figures of merit (FoM) as the transconductance g m , the output conductance g d , the intrinsic gain A v and the cut-off frequencies f t and f max . Firstly, 28 nm FDSOI MOSFETs are compared with other advanced devices and are shown to outperform them. Secondly, g m -A v analogue metrics is demonstrated to be affected by operation frequency. Small-signal parameters variation is limited and dominated by self-heating effect. This is in contrast to the first generation of ultra-thin body and BOX devices without a ground plane where coupling through the substrate has a considerable effect. Thirdly, the self-heating effect is analysed and shown to be smaller than previously predicted by simulations for such devices. Fourthly, it is shown that f t reaches ~270 GHz in the shortest devices. |
---|---|
DOI: | 10.1109/ULIS.2014.6813904 |