Loading…
Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations
This letter proposes a parametric sparse multiple input multiple output (MIMO)-OFDM channel estimation scheme based on the finite rate of innovation (FRI) theory, whereby super-resolution estimates of path delays with arbitrary values can be achieved. Meanwhile, both the spatial and temporal correla...
Saved in:
Published in: | IEEE communications letters 2014-07, Vol.18 (7), p.1266-1269 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter proposes a parametric sparse multiple input multiple output (MIMO)-OFDM channel estimation scheme based on the finite rate of innovation (FRI) theory, whereby super-resolution estimates of path delays with arbitrary values can be achieved. Meanwhile, both the spatial and temporal correlations of wireless MIMO channels are exploited to improve the accuracy of the channel estimation. For outdoor communication scenarios, where wireless channels are sparse in nature, path delays of different transmit-receive antenna pairs share a common sparse pattern due to the spatial correlation of MIMO channels. Meanwhile, the channel sparse pattern is nearly unchanged during several adjacent OFDM symbols due to the temporal correlation of MIMO channels. By simultaneously exploiting those MIMO channel characteristics, the proposed scheme performs better than existing state-of-the-art schemes. Furthermore, by joint processing of signals associated with different antennas, the pilot overhead can be reduced under the framework of the FRI theory. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2014.2325027 |