Loading…

Load forecasting using elastic gradient descent

The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time se...

Full description

Saved in:
Bibliographic Details
Main Authors: Hong, Yuan, Xia, Changhao, Zhang, Shixiang, Wu, Lin, Yuan, Chao, Huang, Ying, Wang, Xuxu, Zhu, Haifeng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 251
container_issue
container_start_page 247
container_title
container_volume
creator Hong, Yuan
Xia, Changhao
Zhang, Shixiang
Wu, Lin
Yuan, Chao
Huang, Ying
Wang, Xuxu
Zhu, Haifeng
description The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.
doi_str_mv 10.1109/ICNC.2013.6817979
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6817979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6817979</ieee_id><sourcerecordid>1692337941</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473</originalsourceid><addsrcrecordid>eNo9UMtOw0AMXBBIlNIPQFxy5JLU3mf2iCIelSK49B5tNk4VlCYlmx74e7ZqxcVjj0aesRl7RMgQwa43xWeRcUCR6RyNNfaK3aPURkiDEq7ZgqMyqVVa3Pz3St2xVQjfACDQGAN2wdbl6JqkHSfyLszdsEuO4VSpP40-2U2u6WiYk4aCj_jAblvXB1pdcMm2b6_b4iMtv943xUuZdsjFnCpotIrptCZvLaDzKA0o2eQ513Ukc1BKUwu1a8F56U08CnOOVIOTRizZ83ntYRp_jhTmat9F_753A43HUKG2XAhjJUbp01naEVF1mLq9m36ry1fEH5b9UfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1692337941</pqid></control><display><type>conference_proceeding</type><title>Load forecasting using elastic gradient descent</title><source>IEEE Xplore All Conference Series</source><creator>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</creator><creatorcontrib>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</creatorcontrib><description>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</description><identifier>ISSN: 2157-9555</identifier><identifier>EISSN: 2157-9563</identifier><identifier>EISBN: 1467347140</identifier><identifier>EISBN: 9781467347143</identifier><identifier>DOI: 10.1109/ICNC.2013.6817979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computer simulation ; Conferences ; Convergence ; Descent ; elastic gradient descent method ; error back propagation artificial neural network ; Forecasting ; Load forecasting ; Load modeling ; Mathematical models ; Neural networks ; Predictive models ; Principal component analysis ; time sequence ; Training</subject><ispartof>2013 Ninth International Conference on Natural Computation (ICNC), 2013, p.247-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6817979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6817979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Xia, Changhao</creatorcontrib><creatorcontrib>Zhang, Shixiang</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wang, Xuxu</creatorcontrib><creatorcontrib>Zhu, Haifeng</creatorcontrib><title>Load forecasting using elastic gradient descent</title><title>2013 Ninth International Conference on Natural Computation (ICNC)</title><addtitle>ICNC</addtitle><description>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</description><subject>Accuracy</subject><subject>Computer simulation</subject><subject>Conferences</subject><subject>Convergence</subject><subject>Descent</subject><subject>elastic gradient descent method</subject><subject>error back propagation artificial neural network</subject><subject>Forecasting</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Principal component analysis</subject><subject>time sequence</subject><subject>Training</subject><issn>2157-9555</issn><issn>2157-9563</issn><isbn>1467347140</isbn><isbn>9781467347143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtOw0AMXBBIlNIPQFxy5JLU3mf2iCIelSK49B5tNk4VlCYlmx74e7ZqxcVjj0aesRl7RMgQwa43xWeRcUCR6RyNNfaK3aPURkiDEq7ZgqMyqVVa3Pz3St2xVQjfACDQGAN2wdbl6JqkHSfyLszdsEuO4VSpP40-2U2u6WiYk4aCj_jAblvXB1pdcMm2b6_b4iMtv943xUuZdsjFnCpotIrptCZvLaDzKA0o2eQ513Ukc1BKUwu1a8F56U08CnOOVIOTRizZ83ntYRp_jhTmat9F_753A43HUKG2XAhjJUbp01naEVF1mLq9m36ry1fEH5b9UfA</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hong, Yuan</creator><creator>Xia, Changhao</creator><creator>Zhang, Shixiang</creator><creator>Wu, Lin</creator><creator>Yuan, Chao</creator><creator>Huang, Ying</creator><creator>Wang, Xuxu</creator><creator>Zhu, Haifeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Load forecasting using elastic gradient descent</title><author>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Computer simulation</topic><topic>Conferences</topic><topic>Convergence</topic><topic>Descent</topic><topic>elastic gradient descent method</topic><topic>error back propagation artificial neural network</topic><topic>Forecasting</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Principal component analysis</topic><topic>time sequence</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Xia, Changhao</creatorcontrib><creatorcontrib>Zhang, Shixiang</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wang, Xuxu</creatorcontrib><creatorcontrib>Zhu, Haifeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Yuan</au><au>Xia, Changhao</au><au>Zhang, Shixiang</au><au>Wu, Lin</au><au>Yuan, Chao</au><au>Huang, Ying</au><au>Wang, Xuxu</au><au>Zhu, Haifeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Load forecasting using elastic gradient descent</atitle><btitle>2013 Ninth International Conference on Natural Computation (ICNC)</btitle><stitle>ICNC</stitle><date>2013-07-01</date><risdate>2013</risdate><spage>247</spage><epage>251</epage><pages>247-251</pages><issn>2157-9555</issn><eissn>2157-9563</eissn><eisbn>1467347140</eisbn><eisbn>9781467347143</eisbn><abstract>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2013.6817979</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2013 Ninth International Conference on Natural Computation (ICNC), 2013, p.247-251
issn 2157-9555
2157-9563
language eng
recordid cdi_ieee_primary_6817979
source IEEE Xplore All Conference Series
subjects Accuracy
Computer simulation
Conferences
Convergence
Descent
elastic gradient descent method
error back propagation artificial neural network
Forecasting
Load forecasting
Load modeling
Mathematical models
Neural networks
Predictive models
Principal component analysis
time sequence
Training
title Load forecasting using elastic gradient descent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Load%20forecasting%20using%20elastic%20gradient%20descent&rft.btitle=2013%20Ninth%20International%20Conference%20on%20Natural%20Computation%20(ICNC)&rft.au=Hong,%20Yuan&rft.date=2013-07-01&rft.spage=247&rft.epage=251&rft.pages=247-251&rft.issn=2157-9555&rft.eissn=2157-9563&rft_id=info:doi/10.1109/ICNC.2013.6817979&rft.eisbn=1467347140&rft.eisbn_list=9781467347143&rft_dat=%3Cproquest_CHZPO%3E1692337941%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692337941&rft_id=info:pmid/&rft_ieee_id=6817979&rfr_iscdi=true