Loading…
Load forecasting using elastic gradient descent
The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time se...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 251 |
container_issue | |
container_start_page | 247 |
container_title | |
container_volume | |
creator | Hong, Yuan Xia, Changhao Zhang, Shixiang Wu, Lin Yuan, Chao Huang, Ying Wang, Xuxu Zhu, Haifeng |
description | The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast. |
doi_str_mv | 10.1109/ICNC.2013.6817979 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6817979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6817979</ieee_id><sourcerecordid>1692337941</sourcerecordid><originalsourceid>FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473</originalsourceid><addsrcrecordid>eNo9UMtOw0AMXBBIlNIPQFxy5JLU3mf2iCIelSK49B5tNk4VlCYlmx74e7ZqxcVjj0aesRl7RMgQwa43xWeRcUCR6RyNNfaK3aPURkiDEq7ZgqMyqVVa3Pz3St2xVQjfACDQGAN2wdbl6JqkHSfyLszdsEuO4VSpP40-2U2u6WiYk4aCj_jAblvXB1pdcMm2b6_b4iMtv943xUuZdsjFnCpotIrptCZvLaDzKA0o2eQ513Ukc1BKUwu1a8F56U08CnOOVIOTRizZ83ntYRp_jhTmat9F_753A43HUKG2XAhjJUbp01naEVF1mLq9m36ry1fEH5b9UfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1692337941</pqid></control><display><type>conference_proceeding</type><title>Load forecasting using elastic gradient descent</title><source>IEEE Xplore All Conference Series</source><creator>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</creator><creatorcontrib>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</creatorcontrib><description>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</description><identifier>ISSN: 2157-9555</identifier><identifier>EISSN: 2157-9563</identifier><identifier>EISBN: 1467347140</identifier><identifier>EISBN: 9781467347143</identifier><identifier>DOI: 10.1109/ICNC.2013.6817979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computer simulation ; Conferences ; Convergence ; Descent ; elastic gradient descent method ; error back propagation artificial neural network ; Forecasting ; Load forecasting ; Load modeling ; Mathematical models ; Neural networks ; Predictive models ; Principal component analysis ; time sequence ; Training</subject><ispartof>2013 Ninth International Conference on Natural Computation (ICNC), 2013, p.247-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6817979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6817979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Xia, Changhao</creatorcontrib><creatorcontrib>Zhang, Shixiang</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wang, Xuxu</creatorcontrib><creatorcontrib>Zhu, Haifeng</creatorcontrib><title>Load forecasting using elastic gradient descent</title><title>2013 Ninth International Conference on Natural Computation (ICNC)</title><addtitle>ICNC</addtitle><description>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</description><subject>Accuracy</subject><subject>Computer simulation</subject><subject>Conferences</subject><subject>Convergence</subject><subject>Descent</subject><subject>elastic gradient descent method</subject><subject>error back propagation artificial neural network</subject><subject>Forecasting</subject><subject>Load forecasting</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Principal component analysis</subject><subject>time sequence</subject><subject>Training</subject><issn>2157-9555</issn><issn>2157-9563</issn><isbn>1467347140</isbn><isbn>9781467347143</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9UMtOw0AMXBBIlNIPQFxy5JLU3mf2iCIelSK49B5tNk4VlCYlmx74e7ZqxcVjj0aesRl7RMgQwa43xWeRcUCR6RyNNfaK3aPURkiDEq7ZgqMyqVVa3Pz3St2xVQjfACDQGAN2wdbl6JqkHSfyLszdsEuO4VSpP40-2U2u6WiYk4aCj_jAblvXB1pdcMm2b6_b4iMtv943xUuZdsjFnCpotIrptCZvLaDzKA0o2eQ513Ukc1BKUwu1a8F56U08CnOOVIOTRizZ83ntYRp_jhTmat9F_753A43HUKG2XAhjJUbp01naEVF1mLq9m36ry1fEH5b9UfA</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Hong, Yuan</creator><creator>Xia, Changhao</creator><creator>Zhang, Shixiang</creator><creator>Wu, Lin</creator><creator>Yuan, Chao</creator><creator>Huang, Ying</creator><creator>Wang, Xuxu</creator><creator>Zhu, Haifeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130701</creationdate><title>Load forecasting using elastic gradient descent</title><author>Hong, Yuan ; Xia, Changhao ; Zhang, Shixiang ; Wu, Lin ; Yuan, Chao ; Huang, Ying ; Wang, Xuxu ; Zhu, Haifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Computer simulation</topic><topic>Conferences</topic><topic>Convergence</topic><topic>Descent</topic><topic>elastic gradient descent method</topic><topic>error back propagation artificial neural network</topic><topic>Forecasting</topic><topic>Load forecasting</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Principal component analysis</topic><topic>time sequence</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Xia, Changhao</creatorcontrib><creatorcontrib>Zhang, Shixiang</creatorcontrib><creatorcontrib>Wu, Lin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Wang, Xuxu</creatorcontrib><creatorcontrib>Zhu, Haifeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hong, Yuan</au><au>Xia, Changhao</au><au>Zhang, Shixiang</au><au>Wu, Lin</au><au>Yuan, Chao</au><au>Huang, Ying</au><au>Wang, Xuxu</au><au>Zhu, Haifeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Load forecasting using elastic gradient descent</atitle><btitle>2013 Ninth International Conference on Natural Computation (ICNC)</btitle><stitle>ICNC</stitle><date>2013-07-01</date><risdate>2013</risdate><spage>247</spage><epage>251</epage><pages>247-251</pages><issn>2157-9555</issn><eissn>2157-9563</eissn><eisbn>1467347140</eisbn><eisbn>9781467347143</eisbn><abstract>The article describes in detail the theoretical basis of the elastic gradient descent method which combines the principal component analysis (PCA) and the time sequence method. In the short-term forecasting instance, the elastic gradient descent neural networks which combines the PCA and the time sequence method was used. The result verifies the effectiveness and feasibility of the introducing the PCA and the time sequence method in processing network optimization. The simulation result shows that this method has good prediction accuracy and convergence speed. In the long-term forecasting instance, the elastic gradient descent method which combines PCA method was used for that forecasting. The result indicated the superiority of the introducing the principal component analysis method in processing large amounts of data. As used herein, the model has good ductility and also lots of factors can be considered in. The prediction accuracy and generalization is good. And it will have a further application prospect in the actual forecast.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2013.6817979</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2013 Ninth International Conference on Natural Computation (ICNC), 2013, p.247-251 |
issn | 2157-9555 2157-9563 |
language | eng |
recordid | cdi_ieee_primary_6817979 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Computer simulation Conferences Convergence Descent elastic gradient descent method error back propagation artificial neural network Forecasting Load forecasting Load modeling Mathematical models Neural networks Predictive models Principal component analysis time sequence Training |
title | Load forecasting using elastic gradient descent |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Load%20forecasting%20using%20elastic%20gradient%20descent&rft.btitle=2013%20Ninth%20International%20Conference%20on%20Natural%20Computation%20(ICNC)&rft.au=Hong,%20Yuan&rft.date=2013-07-01&rft.spage=247&rft.epage=251&rft.pages=247-251&rft.issn=2157-9555&rft.eissn=2157-9563&rft_id=info:doi/10.1109/ICNC.2013.6817979&rft.eisbn=1467347140&rft.eisbn_list=9781467347143&rft_dat=%3Cproquest_CHZPO%3E1692337941%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i123t-50d6501366ec9901ac147054d8826b6ec80556ef0baf0ac4c71091821eb0a473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692337941&rft_id=info:pmid/&rft_ieee_id=6817979&rfr_iscdi=true |