Loading…
The methods in infrared thermal imaging diagnosis technology of power equipment
Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equi...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73 |
---|---|
cites | |
container_end_page | 251 |
container_issue | |
container_start_page | 246 |
container_title | |
container_volume | |
creator | Haoyang Cui Yongpeng Xu Jundong Zeng Zhong Tang |
description | Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out. |
doi_str_mv | 10.1109/ICEIEC.2013.6835498 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6835498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6835498</ieee_id><sourcerecordid>6835498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</originalsourceid><addsrcrecordid>eNotj01qwzAYRNVFoSX1CbLRBexK1p-1LMZtDYFsknWQ5U-2im25kkvJ7RtoYGAWD4Y3CO0pKSgl-rWtm7api5JQVsiKCa6rB5RpVVEuFeOaseoJZSl9EUKokpIr-YyOpxHwDNsY-oT9couLJkKPtxHibCbsZzP4ZcC9N8MSkk94AzsuYQrDFQeH1_ALEcP3j19nWLYX9OjMlCC79w6d35tT_Zkfjh9t_XbILeVky4VQshTAqbCOCK2YcVIYwWWvrVQdkZ01orvRXnRGMeGMLamTyghJGTjFdmj_v-sB4LLGm2a8Xu632R-LF070</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</creator><creatorcontrib>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</creatorcontrib><description>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</description><identifier>EISBN: 9781467349338</identifier><identifier>EISBN: 146734933X</identifier><identifier>DOI: 10.1109/ICEIEC.2013.6835498</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Computational modeling ; fault diagnosis ; Image edge detection ; image processing ; Image segmentation ; Infrared thermography ; Monitoring ; neural network ; Noise reduction ; Reliability</subject><ispartof>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, 2013, p.246-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6835498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6835498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haoyang Cui</creatorcontrib><creatorcontrib>Yongpeng Xu</creatorcontrib><creatorcontrib>Jundong Zeng</creatorcontrib><creatorcontrib>Zhong Tang</creatorcontrib><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><title>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication</title><addtitle>ICEIEC</addtitle><description>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</description><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>fault diagnosis</subject><subject>Image edge detection</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>Infrared thermography</subject><subject>Monitoring</subject><subject>neural network</subject><subject>Noise reduction</subject><subject>Reliability</subject><isbn>9781467349338</isbn><isbn>146734933X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01qwzAYRNVFoSX1CbLRBexK1p-1LMZtDYFsknWQ5U-2im25kkvJ7RtoYGAWD4Y3CO0pKSgl-rWtm7api5JQVsiKCa6rB5RpVVEuFeOaseoJZSl9EUKokpIr-YyOpxHwDNsY-oT9couLJkKPtxHibCbsZzP4ZcC9N8MSkk94AzsuYQrDFQeH1_ALEcP3j19nWLYX9OjMlCC79w6d35tT_Zkfjh9t_XbILeVky4VQshTAqbCOCK2YcVIYwWWvrVQdkZ01orvRXnRGMeGMLamTyghJGTjFdmj_v-sB4LLGm2a8Xu632R-LF070</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Haoyang Cui</creator><creator>Yongpeng Xu</creator><creator>Jundong Zeng</creator><creator>Zhong Tang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><author>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>fault diagnosis</topic><topic>Image edge detection</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>Infrared thermography</topic><topic>Monitoring</topic><topic>neural network</topic><topic>Noise reduction</topic><topic>Reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Haoyang Cui</creatorcontrib><creatorcontrib>Yongpeng Xu</creatorcontrib><creatorcontrib>Jundong Zeng</creatorcontrib><creatorcontrib>Zhong Tang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haoyang Cui</au><au>Yongpeng Xu</au><au>Jundong Zeng</au><au>Zhong Tang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The methods in infrared thermal imaging diagnosis technology of power equipment</atitle><btitle>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication</btitle><stitle>ICEIEC</stitle><date>2013-11</date><risdate>2013</risdate><spage>246</spage><epage>251</epage><pages>246-251</pages><eisbn>9781467349338</eisbn><eisbn>146734933X</eisbn><abstract>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</abstract><pub>IEEE</pub><doi>10.1109/ICEIEC.2013.6835498</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 9781467349338 |
ispartof | 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, 2013, p.246-251 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6835498 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Computational modeling fault diagnosis Image edge detection image processing Image segmentation Infrared thermography Monitoring neural network Noise reduction Reliability |
title | The methods in infrared thermal imaging diagnosis technology of power equipment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20methods%20in%20infrared%20thermal%20imaging%20diagnosis%20technology%20of%20power%20equipment&rft.btitle=2013%20IEEE%204th%20International%20Conference%20on%20Electronics%20Information%20and%20Emergency%20Communication&rft.au=Haoyang%20Cui&rft.date=2013-11&rft.spage=246&rft.epage=251&rft.pages=246-251&rft_id=info:doi/10.1109/ICEIEC.2013.6835498&rft.eisbn=9781467349338&rft.eisbn_list=146734933X&rft_dat=%3Cieee_6IE%3E6835498%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6835498&rfr_iscdi=true |