Loading…

The methods in infrared thermal imaging diagnosis technology of power equipment

Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equi...

Full description

Saved in:
Bibliographic Details
Main Authors: Haoyang Cui, Yongpeng Xu, Jundong Zeng, Zhong Tang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73
cites
container_end_page 251
container_issue
container_start_page 246
container_title
container_volume
creator Haoyang Cui
Yongpeng Xu
Jundong Zeng
Zhong Tang
description Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.
doi_str_mv 10.1109/ICEIEC.2013.6835498
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6835498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6835498</ieee_id><sourcerecordid>6835498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</originalsourceid><addsrcrecordid>eNotj01qwzAYRNVFoSX1CbLRBexK1p-1LMZtDYFsknWQ5U-2im25kkvJ7RtoYGAWD4Y3CO0pKSgl-rWtm7api5JQVsiKCa6rB5RpVVEuFeOaseoJZSl9EUKokpIr-YyOpxHwDNsY-oT9couLJkKPtxHibCbsZzP4ZcC9N8MSkk94AzsuYQrDFQeH1_ALEcP3j19nWLYX9OjMlCC79w6d35tT_Zkfjh9t_XbILeVky4VQshTAqbCOCK2YcVIYwWWvrVQdkZ01orvRXnRGMeGMLamTyghJGTjFdmj_v-sB4LLGm2a8Xu632R-LF070</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</creator><creatorcontrib>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</creatorcontrib><description>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</description><identifier>EISBN: 9781467349338</identifier><identifier>EISBN: 146734933X</identifier><identifier>DOI: 10.1109/ICEIEC.2013.6835498</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Computational modeling ; fault diagnosis ; Image edge detection ; image processing ; Image segmentation ; Infrared thermography ; Monitoring ; neural network ; Noise reduction ; Reliability</subject><ispartof>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, 2013, p.246-251</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6835498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6835498$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haoyang Cui</creatorcontrib><creatorcontrib>Yongpeng Xu</creatorcontrib><creatorcontrib>Jundong Zeng</creatorcontrib><creatorcontrib>Zhong Tang</creatorcontrib><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><title>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication</title><addtitle>ICEIEC</addtitle><description>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</description><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>fault diagnosis</subject><subject>Image edge detection</subject><subject>image processing</subject><subject>Image segmentation</subject><subject>Infrared thermography</subject><subject>Monitoring</subject><subject>neural network</subject><subject>Noise reduction</subject><subject>Reliability</subject><isbn>9781467349338</isbn><isbn>146734933X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01qwzAYRNVFoSX1CbLRBexK1p-1LMZtDYFsknWQ5U-2im25kkvJ7RtoYGAWD4Y3CO0pKSgl-rWtm7api5JQVsiKCa6rB5RpVVEuFeOaseoJZSl9EUKokpIr-YyOpxHwDNsY-oT9couLJkKPtxHibCbsZzP4ZcC9N8MSkk94AzsuYQrDFQeH1_ALEcP3j19nWLYX9OjMlCC79w6d35tT_Zkfjh9t_XbILeVky4VQshTAqbCOCK2YcVIYwWWvrVQdkZ01orvRXnRGMeGMLamTyghJGTjFdmj_v-sB4LLGm2a8Xu632R-LF070</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Haoyang Cui</creator><creator>Yongpeng Xu</creator><creator>Jundong Zeng</creator><creator>Zhong Tang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201311</creationdate><title>The methods in infrared thermal imaging diagnosis technology of power equipment</title><author>Haoyang Cui ; Yongpeng Xu ; Jundong Zeng ; Zhong Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>fault diagnosis</topic><topic>Image edge detection</topic><topic>image processing</topic><topic>Image segmentation</topic><topic>Infrared thermography</topic><topic>Monitoring</topic><topic>neural network</topic><topic>Noise reduction</topic><topic>Reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Haoyang Cui</creatorcontrib><creatorcontrib>Yongpeng Xu</creatorcontrib><creatorcontrib>Jundong Zeng</creatorcontrib><creatorcontrib>Zhong Tang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haoyang Cui</au><au>Yongpeng Xu</au><au>Jundong Zeng</au><au>Zhong Tang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The methods in infrared thermal imaging diagnosis technology of power equipment</atitle><btitle>2013 IEEE 4th International Conference on Electronics Information and Emergency Communication</btitle><stitle>ICEIEC</stitle><date>2013-11</date><risdate>2013</risdate><spage>246</spage><epage>251</epage><pages>246-251</pages><eisbn>9781467349338</eisbn><eisbn>146734933X</eisbn><abstract>Infrared thermography, which has been widely used, is an important electrical equipment monitoring and fault diagnosis technology. It has two key steps about infrared thermal image processing and artificial intelligence diagnosis faults. In order to improve the accuracy of diagnosing electrical equipment thermal fault, the algorithms of denoising, segmentation and feature extraction in image processing, the BP and RBF network model of neural networks for intelligent diagnosis are discussed with the specific experimental conditions, the advantages and disadvantages of the various technologies and the improved methods are pointed out.</abstract><pub>IEEE</pub><doi>10.1109/ICEIEC.2013.6835498</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781467349338
ispartof 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, 2013, p.246-251
issn
language eng
recordid cdi_ieee_primary_6835498
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Computational modeling
fault diagnosis
Image edge detection
image processing
Image segmentation
Infrared thermography
Monitoring
neural network
Noise reduction
Reliability
title The methods in infrared thermal imaging diagnosis technology of power equipment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20methods%20in%20infrared%20thermal%20imaging%20diagnosis%20technology%20of%20power%20equipment&rft.btitle=2013%20IEEE%204th%20International%20Conference%20on%20Electronics%20Information%20and%20Emergency%20Communication&rft.au=Haoyang%20Cui&rft.date=2013-11&rft.spage=246&rft.epage=251&rft.pages=246-251&rft_id=info:doi/10.1109/ICEIEC.2013.6835498&rft.eisbn=9781467349338&rft.eisbn_list=146734933X&rft_dat=%3Cieee_6IE%3E6835498%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c140t-557625e415cf05973af65a546d9c67b06bca5b15cd5ba735fac21f67a5613ef73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6835498&rfr_iscdi=true