Loading…
FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy
Tool behavior modeling and diagnosis is a big challenge in modern semiconductor fabrication, in particular for the foundry and analog companies with high product-mix and complicated technology nodes. Tool condition monitoring has been practiced by implementing the FDC (Fault Detection and Classifica...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 97 |
container_issue | |
container_start_page | 92 |
container_title | |
container_volume | |
creator | Blue, Jakey Roussy, Agnes Pinaton, Jacques |
description | Tool behavior modeling and diagnosis is a big challenge in modern semiconductor fabrication, in particular for the foundry and analog companies with high product-mix and complicated technology nodes. Tool condition monitoring has been practiced by implementing the FDC (Fault Detection and Classification) system and analyzing large amount of real-time equipment data. This paper continues the work of tool condition hierarchy, where the excursions can be detected in one single overall tool indicator and are intuitively drilled down to the level of sensor groups. A R2R (Run-to-Run) variation monitoring technique is developed in order to correlate the tool faults with single sensor and thus completes the diagnostic gap of the hierarchy. The tool condition monitoring then becomes efficient and tool fault diagnosis can be systematically top-down. |
doi_str_mv | 10.1109/ASMC.2014.6846984 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6846984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6846984</ieee_id><sourcerecordid>6846984</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d3a10f278e38f8ef1bed25655c917cd815c599e4dd07e39d28468b3ed5fed6de3</originalsourceid><addsrcrecordid>eNotkMtKAzEYRqMoWGsfQNzkBWbM_bIso1WhIrS6LunknzYyTSQZCn17B-3qrM4H50PonpKaUmIf5-v3pmaEiloZoawRF2hmtaFCW8utEOwSTRjXqlLK6is0oUSbymjBb9BtKd-EkFGiE7RePDV4xVb46HJwQ0gRH1IMQ8oh7nCXMi4Qy4gejtBjH9wuphIKDhEPKfW4TdGHP28fILvc7k936LpzfYHZmVP0tXj-bF6r5cfLWzNfVoFqOVSeO0o6pg1w0xno6BY8k0rK1lLdekNlK60F4T3RwK1nY6jZcvCyA6888Cl6-N8NALD5yeHg8mlz_oP_At51Uzo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy</title><source>IEEE Xplore All Conference Series</source><creator>Blue, Jakey ; Roussy, Agnes ; Pinaton, Jacques</creator><creatorcontrib>Blue, Jakey ; Roussy, Agnes ; Pinaton, Jacques</creatorcontrib><description>Tool behavior modeling and diagnosis is a big challenge in modern semiconductor fabrication, in particular for the foundry and analog companies with high product-mix and complicated technology nodes. Tool condition monitoring has been practiced by implementing the FDC (Fault Detection and Classification) system and analyzing large amount of real-time equipment data. This paper continues the work of tool condition hierarchy, where the excursions can be detected in one single overall tool indicator and are intuitively drilled down to the level of sensor groups. A R2R (Run-to-Run) variation monitoring technique is developed in order to correlate the tool faults with single sensor and thus completes the diagnostic gap of the hierarchy. The tool condition monitoring then becomes efficient and tool fault diagnosis can be systematically top-down.</description><identifier>ISSN: 1078-8743</identifier><identifier>EISSN: 2376-6697</identifier><identifier>EISBN: 9781479939442</identifier><identifier>EISBN: 1479939447</identifier><identifier>DOI: 10.1109/ASMC.2014.6846984</identifier><language>eng</language><publisher>IEEE</publisher><subject>Condition monitoring ; Fault diagnosis ; FDC ; FDC profile synchronization ; Monitoring ; Production ; recipe grouping ; run-to-run variation ; SPC ; Synchronization ; Temperature sensors ; tool condition hierarchy ; tool fault diagnosis</subject><ispartof>25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 2014, p.92-97</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6846984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6846984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Blue, Jakey</creatorcontrib><creatorcontrib>Roussy, Agnes</creatorcontrib><creatorcontrib>Pinaton, Jacques</creatorcontrib><title>FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy</title><title>25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014)</title><addtitle>ASMC</addtitle><description>Tool behavior modeling and diagnosis is a big challenge in modern semiconductor fabrication, in particular for the foundry and analog companies with high product-mix and complicated technology nodes. Tool condition monitoring has been practiced by implementing the FDC (Fault Detection and Classification) system and analyzing large amount of real-time equipment data. This paper continues the work of tool condition hierarchy, where the excursions can be detected in one single overall tool indicator and are intuitively drilled down to the level of sensor groups. A R2R (Run-to-Run) variation monitoring technique is developed in order to correlate the tool faults with single sensor and thus completes the diagnostic gap of the hierarchy. The tool condition monitoring then becomes efficient and tool fault diagnosis can be systematically top-down.</description><subject>Condition monitoring</subject><subject>Fault diagnosis</subject><subject>FDC</subject><subject>FDC profile synchronization</subject><subject>Monitoring</subject><subject>Production</subject><subject>recipe grouping</subject><subject>run-to-run variation</subject><subject>SPC</subject><subject>Synchronization</subject><subject>Temperature sensors</subject><subject>tool condition hierarchy</subject><subject>tool fault diagnosis</subject><issn>1078-8743</issn><issn>2376-6697</issn><isbn>9781479939442</isbn><isbn>1479939447</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtKAzEYRqMoWGsfQNzkBWbM_bIso1WhIrS6LunknzYyTSQZCn17B-3qrM4H50PonpKaUmIf5-v3pmaEiloZoawRF2hmtaFCW8utEOwSTRjXqlLK6is0oUSbymjBb9BtKd-EkFGiE7RePDV4xVb46HJwQ0gRH1IMQ8oh7nCXMi4Qy4gejtBjH9wuphIKDhEPKfW4TdGHP28fILvc7k936LpzfYHZmVP0tXj-bF6r5cfLWzNfVoFqOVSeO0o6pg1w0xno6BY8k0rK1lLdekNlK60F4T3RwK1nY6jZcvCyA6888Cl6-N8NALD5yeHg8mlz_oP_At51Uzo</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Blue, Jakey</creator><creator>Roussy, Agnes</creator><creator>Pinaton, Jacques</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy</title><author>Blue, Jakey ; Roussy, Agnes ; Pinaton, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d3a10f278e38f8ef1bed25655c917cd815c599e4dd07e39d28468b3ed5fed6de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condition monitoring</topic><topic>Fault diagnosis</topic><topic>FDC</topic><topic>FDC profile synchronization</topic><topic>Monitoring</topic><topic>Production</topic><topic>recipe grouping</topic><topic>run-to-run variation</topic><topic>SPC</topic><topic>Synchronization</topic><topic>Temperature sensors</topic><topic>tool condition hierarchy</topic><topic>tool fault diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blue, Jakey</creatorcontrib><creatorcontrib>Roussy, Agnes</creatorcontrib><creatorcontrib>Pinaton, Jacques</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Blue, Jakey</au><au>Roussy, Agnes</au><au>Pinaton, Jacques</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy</atitle><btitle>25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014)</btitle><stitle>ASMC</stitle><date>2014-05</date><risdate>2014</risdate><spage>92</spage><epage>97</epage><pages>92-97</pages><issn>1078-8743</issn><eissn>2376-6697</eissn><eisbn>9781479939442</eisbn><eisbn>1479939447</eisbn><abstract>Tool behavior modeling and diagnosis is a big challenge in modern semiconductor fabrication, in particular for the foundry and analog companies with high product-mix and complicated technology nodes. Tool condition monitoring has been practiced by implementing the FDC (Fault Detection and Classification) system and analyzing large amount of real-time equipment data. This paper continues the work of tool condition hierarchy, where the excursions can be detected in one single overall tool indicator and are intuitively drilled down to the level of sensor groups. A R2R (Run-to-Run) variation monitoring technique is developed in order to correlate the tool faults with single sensor and thus completes the diagnostic gap of the hierarchy. The tool condition monitoring then becomes efficient and tool fault diagnosis can be systematically top-down.</abstract><pub>IEEE</pub><doi>10.1109/ASMC.2014.6846984</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1078-8743 |
ispartof | 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014), 2014, p.92-97 |
issn | 1078-8743 2376-6697 |
language | eng |
recordid | cdi_ieee_primary_6846984 |
source | IEEE Xplore All Conference Series |
subjects | Condition monitoring Fault diagnosis FDC FDC profile synchronization Monitoring Production recipe grouping run-to-run variation SPC Synchronization Temperature sensors tool condition hierarchy tool fault diagnosis |
title | FDC R2R variation monitoring for sensor level diagnosis in tool condition hierarchy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=FDC%20R2R%20variation%20monitoring%20for%20sensor%20level%20diagnosis%20in%20tool%20condition%20hierarchy&rft.btitle=25th%20Annual%20SEMI%20Advanced%20Semiconductor%20Manufacturing%20Conference%20(ASMC%202014)&rft.au=Blue,%20Jakey&rft.date=2014-05&rft.spage=92&rft.epage=97&rft.pages=92-97&rft.issn=1078-8743&rft.eissn=2376-6697&rft_id=info:doi/10.1109/ASMC.2014.6846984&rft.eisbn=9781479939442&rft.eisbn_list=1479939447&rft_dat=%3Cieee_CHZPO%3E6846984%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-d3a10f278e38f8ef1bed25655c917cd815c599e4dd07e39d28468b3ed5fed6de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6846984&rfr_iscdi=true |