Loading…
Real-Time Path Planning Based on Hybrid-VANET-Enhanced Transportation System
Real-time path planning can efficiently relieve traffic congestion in urban scenarios. However, how to design an efficient path-planning algorithm to achieve a globally optimal vehicle-traffic control still remains a challenging problem, particularly when we take drivers' individual preferences...
Saved in:
Published in: | IEEE transactions on vehicular technology 2015-05, Vol.64 (5), p.1664-1678 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Real-time path planning can efficiently relieve traffic congestion in urban scenarios. However, how to design an efficient path-planning algorithm to achieve a globally optimal vehicle-traffic control still remains a challenging problem, particularly when we take drivers' individual preferences into consideration. In this paper, we first establish a hybrid intelligent transportation system (ITS), i.e., a hybrid-VANET-enhanced ITS, which utilizes both vehicular ad hoc networks (VANETs) and cellular systems of the public transportation system to enable real-time communications among vehicles, roadside units (RSUs), and a vehicle-traffic server in an efficient way. Then, we propose a real-time path-planning algorithm, which not only improves the overall spatial utilization of a road network but reduces average vehicle travel cost for avoiding vehicles from getting stuck in congestion as well. A stochastic Lyapunov optimization technique is exploited to address the globally optimal path-planning problem. Finally, the transmission delay of the hybrid-VANET-enhanced ITS is evaluated in VISSIM to show the timeliness of the proposed communication framework. Moreover, system-level simulations conducted in Java demonstrate that the proposed path-planning algorithm outperforms the traditional distributed path planning in terms of balancing the spatial utilization and drivers' travel cost. |
---|---|
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2014.2335201 |