Loading…
Control of a Hybrid Energy Source Comprising a Fuel Cell and Two Storage Devices Using Isolated Three-Port Bidirectional DC-DC Converters
This paper deals with a hybrid energy source consisting of a proton exchange membrane fuel cell, two storage devices, and a load. Generally, this type of source constitutes of nonisolated dc-dc converters. In order to have galvanic isolation for safety reasons and a high voltage ratio, we introduce...
Saved in:
Published in: | IEEE transactions on industry applications 2015-01, Vol.51 (1), p.491-497 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with a hybrid energy source consisting of a proton exchange membrane fuel cell, two storage devices, and a load. Generally, this type of source constitutes of nonisolated dc-dc converters. In order to have galvanic isolation for safety reasons and a high voltage ratio, we introduce another system based on the use of three-port isolated dc-dc converters. The storage device can be either a battery or a supercapacitor. This paper presents a control strategy for the hybrid source and includes a global efficiency analysis of power sharing between modules. The proposed system is validated through different simulation results. Additionally, some experimental results are given for the single module operation. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2014.2336975 |