Loading…

Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar

In this paper, we address a technique and related algorithms for precise detection, parametric imaging and classification of small marine targets in a harsh sensing environment attributed for heavy sea clutter via noncooperative processing of the GPS-based Forward Scatter Radar (FSR) data. In contra...

Full description

Saved in:
Bibliographic Details
Main Authors: Kabakchiev, C., Behar, V., Garvanov, I., Kabakchieva, D., Rohling, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 797
container_issue
container_start_page 793
container_title
container_volume
creator Kabakchiev, C.
Behar, V.
Garvanov, I.
Kabakchieva, D.
Rohling, H.
description In this paper, we address a technique and related algorithms for precise detection, parametric imaging and classification of small marine targets in a harsh sensing environment attributed for heavy sea clutter via noncooperative processing of the GPS-based Forward Scatter Radar (FSR) data. In contrary to GPS L5 detection approach, the proposed technique utilizes civil GPS L1 signal formats in FSR exploiting GPS as a non-cooperative transmitter. In our previous studies it is shown that the use of the new power GPS signal L5, and the Forward Scattering effect providing a high SNR, at the detector input allows reliably to detect small air targets in conditions of the intense interference. In this paper we propose another approach, to enhance SNR, at the input of the detector in Forward Scattering Radar (FSR). The use of the effective filter (Local Variance Filter) for suppression of intensive sea clutter allows FSR reliably to detect small marine targets emerged in harsh sea clutter, but with GPS L1 signal, whose SNR is very small. At the classification level, the data mining approach is adopted, in which the target feature parameters are extracted from the preliminary filtered signals by utilizing the modified structure of a processor for target detection and parameter estimation in the time domain. Both, the decision tree-based and the neural network classifiers are featured and adapted for real-time implementation. The efficiency of the proposed technique is verified via analytical performance evaluations and experimental demonstrations.
doi_str_mv 10.1109/ICASSP.2014.6853705
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6853705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6853705</ieee_id><sourcerecordid>6853705</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8789e7c3668ae5089ccf57606ea18522a329cb27929af4a4629ad142174bddd93</originalsourceid><addsrcrecordid>eNotkMFKAzEURaMoWGu_oJt8gFOTTGaSLKXaKhQsVsFdeZ28qZGZaUnSSv0Rf9cUu7oX3uHAfYQMORtxzszd8_h-sZiPBONyVOoiV6w4IwOjNJfKGKFNLs9JT-TKZNywjwvS44VgWcmluSLXIXwxxrSSukd-HzBiFd2mu6Vb8NBi9K6iroW169YUOkurBkJwtavgiNFNTffoDzS00DS0Be86pBH8GmOg2GIqlrqOfiLsE4WQBLsY0dNddI37OWqn80W2gpDAycZ_g7d0keyJOR5fwYK_IZc1NAEHp-yT98nj2_gpm71M0_pZ5rgqYqaVNqiqvCw1YMG0qaq6UCUrEbguhIBcmGollBEGagmyTGm5FFzJlbXW5H0y_Pc6RFxufRruD8vTT_M_57hsMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar</title><source>IEEE Xplore All Conference Series</source><creator>Kabakchiev, C. ; Behar, V. ; Garvanov, I. ; Kabakchieva, D. ; Rohling, H.</creator><creatorcontrib>Kabakchiev, C. ; Behar, V. ; Garvanov, I. ; Kabakchieva, D. ; Rohling, H.</creatorcontrib><description>In this paper, we address a technique and related algorithms for precise detection, parametric imaging and classification of small marine targets in a harsh sensing environment attributed for heavy sea clutter via noncooperative processing of the GPS-based Forward Scatter Radar (FSR) data. In contrary to GPS L5 detection approach, the proposed technique utilizes civil GPS L1 signal formats in FSR exploiting GPS as a non-cooperative transmitter. In our previous studies it is shown that the use of the new power GPS signal L5, and the Forward Scattering effect providing a high SNR, at the detector input allows reliably to detect small air targets in conditions of the intense interference. In this paper we propose another approach, to enhance SNR, at the input of the detector in Forward Scattering Radar (FSR). The use of the effective filter (Local Variance Filter) for suppression of intensive sea clutter allows FSR reliably to detect small marine targets emerged in harsh sea clutter, but with GPS L1 signal, whose SNR is very small. At the classification level, the data mining approach is adopted, in which the target feature parameters are extracted from the preliminary filtered signals by utilizing the modified structure of a processor for target detection and parameter estimation in the time domain. Both, the decision tree-based and the neural network classifiers are featured and adapted for real-time implementation. The efficiency of the proposed technique is verified via analytical performance evaluations and experimental demonstrations.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479928934</identifier><identifier>EISBN: 1479928933</identifier><identifier>DOI: 10.1109/ICASSP.2014.6853705</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boats ; classification ; Classification algorithms ; detection ; FSR ; Global Positioning System ; GPS ; harsh sensing environment ; Radar ; Radar scattering ; Signal to noise ratio</subject><ispartof>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.793-797</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6853705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6853705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kabakchiev, C.</creatorcontrib><creatorcontrib>Behar, V.</creatorcontrib><creatorcontrib>Garvanov, I.</creatorcontrib><creatorcontrib>Kabakchieva, D.</creatorcontrib><creatorcontrib>Rohling, H.</creatorcontrib><title>Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar</title><title>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>In this paper, we address a technique and related algorithms for precise detection, parametric imaging and classification of small marine targets in a harsh sensing environment attributed for heavy sea clutter via noncooperative processing of the GPS-based Forward Scatter Radar (FSR) data. In contrary to GPS L5 detection approach, the proposed technique utilizes civil GPS L1 signal formats in FSR exploiting GPS as a non-cooperative transmitter. In our previous studies it is shown that the use of the new power GPS signal L5, and the Forward Scattering effect providing a high SNR, at the detector input allows reliably to detect small air targets in conditions of the intense interference. In this paper we propose another approach, to enhance SNR, at the input of the detector in Forward Scattering Radar (FSR). The use of the effective filter (Local Variance Filter) for suppression of intensive sea clutter allows FSR reliably to detect small marine targets emerged in harsh sea clutter, but with GPS L1 signal, whose SNR is very small. At the classification level, the data mining approach is adopted, in which the target feature parameters are extracted from the preliminary filtered signals by utilizing the modified structure of a processor for target detection and parameter estimation in the time domain. Both, the decision tree-based and the neural network classifiers are featured and adapted for real-time implementation. The efficiency of the proposed technique is verified via analytical performance evaluations and experimental demonstrations.</description><subject>Boats</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>detection</subject><subject>FSR</subject><subject>Global Positioning System</subject><subject>GPS</subject><subject>harsh sensing environment</subject><subject>Radar</subject><subject>Radar scattering</subject><subject>Signal to noise ratio</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781479928934</isbn><isbn>1479928933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMFKAzEURaMoWGu_oJt8gFOTTGaSLKXaKhQsVsFdeZ28qZGZaUnSSv0Rf9cUu7oX3uHAfYQMORtxzszd8_h-sZiPBONyVOoiV6w4IwOjNJfKGKFNLs9JT-TKZNywjwvS44VgWcmluSLXIXwxxrSSukd-HzBiFd2mu6Vb8NBi9K6iroW169YUOkurBkJwtavgiNFNTffoDzS00DS0Be86pBH8GmOg2GIqlrqOfiLsE4WQBLsY0dNddI37OWqn80W2gpDAycZ_g7d0keyJOR5fwYK_IZc1NAEHp-yT98nj2_gpm71M0_pZ5rgqYqaVNqiqvCw1YMG0qaq6UCUrEbguhIBcmGollBEGagmyTGm5FFzJlbXW5H0y_Pc6RFxufRruD8vTT_M_57hsMw</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Kabakchiev, C.</creator><creator>Behar, V.</creator><creator>Garvanov, I.</creator><creator>Kabakchieva, D.</creator><creator>Rohling, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar</title><author>Kabakchiev, C. ; Behar, V. ; Garvanov, I. ; Kabakchieva, D. ; Rohling, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8789e7c3668ae5089ccf57606ea18522a329cb27929af4a4629ad142174bddd93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boats</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>detection</topic><topic>FSR</topic><topic>Global Positioning System</topic><topic>GPS</topic><topic>harsh sensing environment</topic><topic>Radar</topic><topic>Radar scattering</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Kabakchiev, C.</creatorcontrib><creatorcontrib>Behar, V.</creatorcontrib><creatorcontrib>Garvanov, I.</creatorcontrib><creatorcontrib>Kabakchieva, D.</creatorcontrib><creatorcontrib>Rohling, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kabakchiev, C.</au><au>Behar, V.</au><au>Garvanov, I.</au><au>Kabakchieva, D.</au><au>Rohling, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar</atitle><btitle>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2014-05</date><risdate>2014</risdate><spage>793</spage><epage>797</epage><pages>793-797</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>9781479928934</eisbn><eisbn>1479928933</eisbn><abstract>In this paper, we address a technique and related algorithms for precise detection, parametric imaging and classification of small marine targets in a harsh sensing environment attributed for heavy sea clutter via noncooperative processing of the GPS-based Forward Scatter Radar (FSR) data. In contrary to GPS L5 detection approach, the proposed technique utilizes civil GPS L1 signal formats in FSR exploiting GPS as a non-cooperative transmitter. In our previous studies it is shown that the use of the new power GPS signal L5, and the Forward Scattering effect providing a high SNR, at the detector input allows reliably to detect small air targets in conditions of the intense interference. In this paper we propose another approach, to enhance SNR, at the input of the detector in Forward Scattering Radar (FSR). The use of the effective filter (Local Variance Filter) for suppression of intensive sea clutter allows FSR reliably to detect small marine targets emerged in harsh sea clutter, but with GPS L1 signal, whose SNR is very small. At the classification level, the data mining approach is adopted, in which the target feature parameters are extracted from the preliminary filtered signals by utilizing the modified structure of a processor for target detection and parameter estimation in the time domain. Both, the decision tree-based and the neural network classifiers are featured and adapted for real-time implementation. The efficiency of the proposed technique is verified via analytical performance evaluations and experimental demonstrations.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2014.6853705</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.793-797
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6853705
source IEEE Xplore All Conference Series
subjects Boats
classification
Classification algorithms
detection
FSR
Global Positioning System
GPS
harsh sensing environment
Radar
Radar scattering
Signal to noise ratio
title Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based Forward Scattering Radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection,%20parametric%20imaging%20and%20classification%20of%20very%20small%20marine%20targets%20emerged%20in%20heavy%20sea%20clutter%20utilizing%20GPS-based%20Forward%20Scattering%20Radar&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Kabakchiev,%20C.&rft.date=2014-05&rft.spage=793&rft.epage=797&rft.pages=793-797&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2014.6853705&rft.eisbn=9781479928934&rft.eisbn_list=1479928933&rft_dat=%3Cieee_CHZPO%3E6853705%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8789e7c3668ae5089ccf57606ea18522a329cb27929af4a4629ad142174bddd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6853705&rfr_iscdi=true