Loading…
Reduced-rank neural activity index for EEG/MEG multi-source localization
We consider the problem of electroencephalography (EEG) and magnetoencephalography (MEG) source localization using beamforming techniques. Specifically, we propose a reduced-rank extension of the recently derived multi-source activity index (MAI), which itself is an extension of the classical neural...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the problem of electroencephalography (EEG) and magnetoencephalography (MEG) source localization using beamforming techniques. Specifically, we propose a reduced-rank extension of the recently derived multi-source activity index (MAI), which itself is an extension of the classical neural activity index to the multi-source case. We show that, for uncorrelated dipole sources and any nonzero rank constraint, the proposed reduced-rank multi-source activity index (RR-MAI) achieves the global maximum when evaluated at the true source positions. Therefore, the RR-MAI can be used to localize multiple sources simultaneously. Furthermore, we propose another version of the RR-MAI which can be seen as a natural generalization of the proposed index to arbitrarily correlated sources. We present a series of numerical simulations showing that the RR-MAI can achieve a more precise source localization than the full-rank MAI in the case when the EEG/MEG forward model becomes ill-conditioned, which in our settings corresponds to the case of closely positioned sources and low signal-to-noise ratio. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2014.6854495 |