Loading…

Blockwise coordinate descent schemes for sparse representation

The current sparse representation framework is to decouple it as two subproblems, i.e., alternate sparse coding and dictionary learning using different optimizers, treating elements in bases and codes separately. In this paper, we treat elements both in bases and codes ho-mogenously. The original op...

Full description

Saved in:
Bibliographic Details
Main Authors: Bao-Di Liu, Yu-Xiong Wang, Bin Shen, Yu-Jin Zhang, Yan-Jiang Wang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c225t-259368ffbe0e06e09152086510eba968fb7058fbc2797cd9b8ada9478fa5a6e43
cites
container_end_page 5271
container_issue
container_start_page 5267
container_title
container_volume
creator Bao-Di Liu
Yu-Xiong Wang
Bin Shen
Yu-Jin Zhang
Yan-Jiang Wang
description The current sparse representation framework is to decouple it as two subproblems, i.e., alternate sparse coding and dictionary learning using different optimizers, treating elements in bases and codes separately. In this paper, we treat elements both in bases and codes ho-mogenously. The original optimization is directly decoupled as several blockwise alternate subproblems rather than above two. Hence, sparse coding and bases learning optimizations are coupled together. And the variables involved in the optimization problems are partitioned into several suitable blocks with convexity preserved, making it possible to perform an exact block coordinate descent. For each separable subproblem, based on the convexity and monotonic property of the parabolic function, a closed-form solution is obtained. Thus the algorithm is simple, efficient and effective. Experimental results show that our algorithm significantly accelerates the learning process.
doi_str_mv 10.1109/ICASSP.2014.6854608
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6854608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6854608</ieee_id><sourcerecordid>6854608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-259368ffbe0e06e09152086510eba968fb7058fbc2797cd9b8ada9478fa5a6e43</originalsourceid><addsrcrecordid>eNotj91Kw0AUhFdRMK19gt7kBRLPbvbv3AharAqFClXwrmw2Jxhts2E3IL69EXszczHD8A1jSw4l54A3z6u73e6lFMBlqa2SGuwZW6CxXBpEYbGS5ywTlcGCI7xfsIwrAYXmEq_YLKVPALBG2ozd3h-C__ruEuU-hNh0vRspbyh56sc8-Q86UsrbEPM0uDi1Ig2R0hS6sQv9Nbts3SHR4uRz9rZ-eF09FZvt4wS5KbwQaiyEwkrbtq0JCDQB_uFYrThQ7XBKagNqUi8MGt9gbV3jUBrbOuU0yWrOlv-7HRHth9gdXfzZn65Xv5C0TF8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blockwise coordinate descent schemes for sparse representation</title><source>IEEE Xplore All Conference Series</source><creator>Bao-Di Liu ; Yu-Xiong Wang ; Bin Shen ; Yu-Jin Zhang ; Yan-Jiang Wang</creator><creatorcontrib>Bao-Di Liu ; Yu-Xiong Wang ; Bin Shen ; Yu-Jin Zhang ; Yan-Jiang Wang</creatorcontrib><description>The current sparse representation framework is to decouple it as two subproblems, i.e., alternate sparse coding and dictionary learning using different optimizers, treating elements in bases and codes separately. In this paper, we treat elements both in bases and codes ho-mogenously. The original optimization is directly decoupled as several blockwise alternate subproblems rather than above two. Hence, sparse coding and bases learning optimizations are coupled together. And the variables involved in the optimization problems are partitioned into several suitable blocks with convexity preserved, making it possible to perform an exact block coordinate descent. For each separable subproblem, based on the convexity and monotonic property of the parabolic function, a closed-form solution is obtained. Thus the algorithm is simple, efficient and effective. Experimental results show that our algorithm significantly accelerates the learning process.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479928934</identifier><identifier>EISBN: 1479928933</identifier><identifier>DOI: 10.1109/ICASSP.2014.6854608</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; coordinate descent ; Dictionaries ; Dictionary learning ; Encoding ; Linear programming ; Minimization ; Optimization ; sparse coding ; Sparse matrices</subject><ispartof>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.5267-5271</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-259368ffbe0e06e09152086510eba968fb7058fbc2797cd9b8ada9478fa5a6e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6854608$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6854608$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bao-Di Liu</creatorcontrib><creatorcontrib>Yu-Xiong Wang</creatorcontrib><creatorcontrib>Bin Shen</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><creatorcontrib>Yan-Jiang Wang</creatorcontrib><title>Blockwise coordinate descent schemes for sparse representation</title><title>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>The current sparse representation framework is to decouple it as two subproblems, i.e., alternate sparse coding and dictionary learning using different optimizers, treating elements in bases and codes separately. In this paper, we treat elements both in bases and codes ho-mogenously. The original optimization is directly decoupled as several blockwise alternate subproblems rather than above two. Hence, sparse coding and bases learning optimizations are coupled together. And the variables involved in the optimization problems are partitioned into several suitable blocks with convexity preserved, making it possible to perform an exact block coordinate descent. For each separable subproblem, based on the convexity and monotonic property of the parabolic function, a closed-form solution is obtained. Thus the algorithm is simple, efficient and effective. Experimental results show that our algorithm significantly accelerates the learning process.</description><subject>Convergence</subject><subject>coordinate descent</subject><subject>Dictionaries</subject><subject>Dictionary learning</subject><subject>Encoding</subject><subject>Linear programming</subject><subject>Minimization</subject><subject>Optimization</subject><subject>sparse coding</subject><subject>Sparse matrices</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781479928934</isbn><isbn>1479928933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91Kw0AUhFdRMK19gt7kBRLPbvbv3AharAqFClXwrmw2Jxhts2E3IL69EXszczHD8A1jSw4l54A3z6u73e6lFMBlqa2SGuwZW6CxXBpEYbGS5ywTlcGCI7xfsIwrAYXmEq_YLKVPALBG2ozd3h-C__ruEuU-hNh0vRspbyh56sc8-Q86UsrbEPM0uDi1Ig2R0hS6sQv9Nbts3SHR4uRz9rZ-eF09FZvt4wS5KbwQaiyEwkrbtq0JCDQB_uFYrThQ7XBKagNqUi8MGt9gbV3jUBrbOuU0yWrOlv-7HRHth9gdXfzZn65Xv5C0TF8</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Bao-Di Liu</creator><creator>Yu-Xiong Wang</creator><creator>Bin Shen</creator><creator>Yu-Jin Zhang</creator><creator>Yan-Jiang Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>Blockwise coordinate descent schemes for sparse representation</title><author>Bao-Di Liu ; Yu-Xiong Wang ; Bin Shen ; Yu-Jin Zhang ; Yan-Jiang Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-259368ffbe0e06e09152086510eba968fb7058fbc2797cd9b8ada9478fa5a6e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>coordinate descent</topic><topic>Dictionaries</topic><topic>Dictionary learning</topic><topic>Encoding</topic><topic>Linear programming</topic><topic>Minimization</topic><topic>Optimization</topic><topic>sparse coding</topic><topic>Sparse matrices</topic><toplevel>online_resources</toplevel><creatorcontrib>Bao-Di Liu</creatorcontrib><creatorcontrib>Yu-Xiong Wang</creatorcontrib><creatorcontrib>Bin Shen</creatorcontrib><creatorcontrib>Yu-Jin Zhang</creatorcontrib><creatorcontrib>Yan-Jiang Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bao-Di Liu</au><au>Yu-Xiong Wang</au><au>Bin Shen</au><au>Yu-Jin Zhang</au><au>Yan-Jiang Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blockwise coordinate descent schemes for sparse representation</atitle><btitle>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2014-05</date><risdate>2014</risdate><spage>5267</spage><epage>5271</epage><pages>5267-5271</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>9781479928934</eisbn><eisbn>1479928933</eisbn><abstract>The current sparse representation framework is to decouple it as two subproblems, i.e., alternate sparse coding and dictionary learning using different optimizers, treating elements in bases and codes separately. In this paper, we treat elements both in bases and codes ho-mogenously. The original optimization is directly decoupled as several blockwise alternate subproblems rather than above two. Hence, sparse coding and bases learning optimizations are coupled together. And the variables involved in the optimization problems are partitioned into several suitable blocks with convexity preserved, making it possible to perform an exact block coordinate descent. For each separable subproblem, based on the convexity and monotonic property of the parabolic function, a closed-form solution is obtained. Thus the algorithm is simple, efficient and effective. Experimental results show that our algorithm significantly accelerates the learning process.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2014.6854608</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.5267-5271
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_6854608
source IEEE Xplore All Conference Series
subjects Convergence
coordinate descent
Dictionaries
Dictionary learning
Encoding
Linear programming
Minimization
Optimization
sparse coding
Sparse matrices
title Blockwise coordinate descent schemes for sparse representation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blockwise%20coordinate%20descent%20schemes%20for%20sparse%20representation&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Bao-Di%20Liu&rft.date=2014-05&rft.spage=5267&rft.epage=5271&rft.pages=5267-5271&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2014.6854608&rft.eisbn=9781479928934&rft.eisbn_list=1479928933&rft_dat=%3Cieee_CHZPO%3E6854608%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c225t-259368ffbe0e06e09152086510eba968fb7058fbc2797cd9b8ada9478fa5a6e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6854608&rfr_iscdi=true