Loading…
On the statistics of natural stochastic textures and their application in image processing
Statistics of natural images has become an important subject of research in recent years. The highly kurtotic, non-Gaussian, statistics known to be characteristic of many natural images are exploited in various image processing tasks. In this paper, we focus on natural stochastic textures (NST) and...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5833 |
container_issue | |
container_start_page | 5829 |
container_title | |
container_volume | |
creator | Zachevsky, Ido Zeevi, Yehoshua Y. |
description | Statistics of natural images has become an important subject of research in recent years. The highly kurtotic, non-Gaussian, statistics known to be characteristic of many natural images are exploited in various image processing tasks. In this paper, we focus on natural stochastic textures (NST) and substantiate our finding that NST have Gaussian statistics. Using the well-known statistical self-similarity property of natural images, exhibited even more profoundly in NST, we exploit a Gaussian self-similar process known as the fractional Brownian motion, to derive a fBm-PDE-based singleimage superresolution scheme for textured images. Using the same process as a prior, we also apply it in denoising of NST. |
doi_str_mv | 10.1109/ICASSP.2014.6854721 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6854721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6854721</ieee_id><sourcerecordid>6854721</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a3b590a6072e4fbb4147758cc96ce536fb07b651d97dd3d689b60443f18aaf953</originalsourceid><addsrcrecordid>eNotkN1KAzEUhKMouNY-QW_yAlvzn5xLKf5BoUIVxJuSZLNtZN1dNhH07U2xcGDggxnODEILSpaUErh9Xt1tty9LRqhYKiOFZvQMzUEbKjQAM8DFOaoY11BTIO8XqKKSkVpRAVfoOqVPQojRwlToY9PjfAg4ZZtjytEnPLS4t_l7sl2hgz_YI8Y5_BQWErZ9c3TECdtx7KIvvqHHsdyX3Qc8ToMPKcV-f4MuW9ulMD_pDL093L-unur15rEUWNeRaplry50EYhXRLIjWOVE6aGm8B-WD5Kp1RDslaQO6aXijDDhFhOAtNda2IPkMLf5zYwhhN07lj-l3d5qF_wHRgFZp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On the statistics of natural stochastic textures and their application in image processing</title><source>IEEE Xplore All Conference Series</source><creator>Zachevsky, Ido ; Zeevi, Yehoshua Y.</creator><creatorcontrib>Zachevsky, Ido ; Zeevi, Yehoshua Y.</creatorcontrib><description>Statistics of natural images has become an important subject of research in recent years. The highly kurtotic, non-Gaussian, statistics known to be characteristic of many natural images are exploited in various image processing tasks. In this paper, we focus on natural stochastic textures (NST) and substantiate our finding that NST have Gaussian statistics. Using the well-known statistical self-similarity property of natural images, exhibited even more profoundly in NST, we exploit a Gaussian self-similar process known as the fractional Brownian motion, to derive a fBm-PDE-based singleimage superresolution scheme for textured images. Using the same process as a prior, we also apply it in denoising of NST.</description><identifier>ISSN: 1520-6149</identifier><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 9781479928934</identifier><identifier>EISBN: 1479928933</identifier><identifier>DOI: 10.1109/ICASSP.2014.6854721</identifier><language>eng</language><publisher>IEEE</publisher><subject>denoising ; fractional Brownian motion ; Gaussian distribution ; Image resolution ; Image texture enhancement ; natural image statistics ; Noise reduction ; PSNR ; self-similarity ; Signal resolution ; Stochastic processes ; superresolution</subject><ispartof>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.5829-5833</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6854721$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6854721$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zachevsky, Ido</creatorcontrib><creatorcontrib>Zeevi, Yehoshua Y.</creatorcontrib><title>On the statistics of natural stochastic textures and their application in image processing</title><title>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Statistics of natural images has become an important subject of research in recent years. The highly kurtotic, non-Gaussian, statistics known to be characteristic of many natural images are exploited in various image processing tasks. In this paper, we focus on natural stochastic textures (NST) and substantiate our finding that NST have Gaussian statistics. Using the well-known statistical self-similarity property of natural images, exhibited even more profoundly in NST, we exploit a Gaussian self-similar process known as the fractional Brownian motion, to derive a fBm-PDE-based singleimage superresolution scheme for textured images. Using the same process as a prior, we also apply it in denoising of NST.</description><subject>denoising</subject><subject>fractional Brownian motion</subject><subject>Gaussian distribution</subject><subject>Image resolution</subject><subject>Image texture enhancement</subject><subject>natural image statistics</subject><subject>Noise reduction</subject><subject>PSNR</subject><subject>self-similarity</subject><subject>Signal resolution</subject><subject>Stochastic processes</subject><subject>superresolution</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9781479928934</isbn><isbn>1479928933</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN1KAzEUhKMouNY-QW_yAlvzn5xLKf5BoUIVxJuSZLNtZN1dNhH07U2xcGDggxnODEILSpaUErh9Xt1tty9LRqhYKiOFZvQMzUEbKjQAM8DFOaoY11BTIO8XqKKSkVpRAVfoOqVPQojRwlToY9PjfAg4ZZtjytEnPLS4t_l7sl2hgz_YI8Y5_BQWErZ9c3TECdtx7KIvvqHHsdyX3Qc8ToMPKcV-f4MuW9ulMD_pDL093L-unur15rEUWNeRaplry50EYhXRLIjWOVE6aGm8B-WD5Kp1RDslaQO6aXijDDhFhOAtNda2IPkMLf5zYwhhN07lj-l3d5qF_wHRgFZp</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Zachevsky, Ido</creator><creator>Zeevi, Yehoshua Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>On the statistics of natural stochastic textures and their application in image processing</title><author>Zachevsky, Ido ; Zeevi, Yehoshua Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a3b590a6072e4fbb4147758cc96ce536fb07b651d97dd3d689b60443f18aaf953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>denoising</topic><topic>fractional Brownian motion</topic><topic>Gaussian distribution</topic><topic>Image resolution</topic><topic>Image texture enhancement</topic><topic>natural image statistics</topic><topic>Noise reduction</topic><topic>PSNR</topic><topic>self-similarity</topic><topic>Signal resolution</topic><topic>Stochastic processes</topic><topic>superresolution</topic><toplevel>online_resources</toplevel><creatorcontrib>Zachevsky, Ido</creatorcontrib><creatorcontrib>Zeevi, Yehoshua Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zachevsky, Ido</au><au>Zeevi, Yehoshua Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the statistics of natural stochastic textures and their application in image processing</atitle><btitle>2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2014-05</date><risdate>2014</risdate><spage>5829</spage><epage>5833</epage><pages>5829-5833</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><eisbn>9781479928934</eisbn><eisbn>1479928933</eisbn><abstract>Statistics of natural images has become an important subject of research in recent years. The highly kurtotic, non-Gaussian, statistics known to be characteristic of many natural images are exploited in various image processing tasks. In this paper, we focus on natural stochastic textures (NST) and substantiate our finding that NST have Gaussian statistics. Using the well-known statistical self-similarity property of natural images, exhibited even more profoundly in NST, we exploit a Gaussian self-similar process known as the fractional Brownian motion, to derive a fBm-PDE-based singleimage superresolution scheme for textured images. Using the same process as a prior, we also apply it in denoising of NST.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2014.6854721</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-6149 |
ispartof | 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, p.5829-5833 |
issn | 1520-6149 2379-190X |
language | eng |
recordid | cdi_ieee_primary_6854721 |
source | IEEE Xplore All Conference Series |
subjects | denoising fractional Brownian motion Gaussian distribution Image resolution Image texture enhancement natural image statistics Noise reduction PSNR self-similarity Signal resolution Stochastic processes superresolution |
title | On the statistics of natural stochastic textures and their application in image processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20statistics%20of%20natural%20stochastic%20textures%20and%20their%20application%20in%20image%20processing&rft.btitle=2014%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Zachevsky,%20Ido&rft.date=2014-05&rft.spage=5829&rft.epage=5833&rft.pages=5829-5833&rft.issn=1520-6149&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP.2014.6854721&rft.eisbn=9781479928934&rft.eisbn_list=1479928933&rft_dat=%3Cieee_CHZPO%3E6854721%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-a3b590a6072e4fbb4147758cc96ce536fb07b651d97dd3d689b60443f18aaf953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6854721&rfr_iscdi=true |