Loading…

Texel: a methodology and an integrated environment for developing automated systems for texture classification

The techniques used when building a texture classification system are determined, in most cases, ad hoc. For developing such a system, the most commonly used sequence of steps is: acquisition, preprocessing, feature extraction and classification. For each of them, there exist many options, and the c...

Full description

Saved in:
Bibliographic Details
Main Authors: Sanchez, R.M., Espinosa, F.C.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 388
container_issue
container_start_page 382
container_title
container_volume
creator Sanchez, R.M.
Espinosa, F.C.
description The techniques used when building a texture classification system are determined, in most cases, ad hoc. For developing such a system, the most commonly used sequence of steps is: acquisition, preprocessing, feature extraction and classification. For each of them, there exist many options, and the choice of one or more of them influences the rest. The expert has to choose among several kinds of preprocessing tasks, a number of texture analysis methods, and several classifiers. The process of getting a system that provides a good performance is a costly procedure due to the great variety of combinations of processing tasks. In this paper we introduce a methodology for the construction of texture classification systems, primarily focused in natural, random or pseudorandom textures, and a visual tool with a powerful interface that allows us to put it into practice.
doi_str_mv 10.1109/IJSIS.1998.685480
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_685480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>685480</ieee_id><sourcerecordid>685480</sourcerecordid><originalsourceid>FETCH-LOGICAL-i174t-dc30c6ab650fb28c630d8497ed81b9ae21ac5fe7932424e98fcb57b5f451531c3</originalsourceid><addsrcrecordid>eNotkM1qAyEcxIVSaEn3AdqTL5BUV121txL6kRLoIek5uPo3texqWE1I3r5hk4FhGPgxh0HokZIZpUQ_L75Wi9WMaq1mjRJckRtUaamIomrs_A5VOf-Rs5gWTMt7FNdwhO4FG9xD-U0udWl7wia6s3GIBbaDKeAwxEMYUuwhFuzTgB0coEu7ELfY7EvqRyifcoE-j0CBY9kPgG1ncg4-WFNCig_o1psuQ3XNCfp5f1vPP6fL74_F_HU5DVTyMnWWEduYthHEt7WyDSNOcS3BKdpqAzU1VniQmtW85qCVt62QrfBcUMGoZRP0dNkNALDZDaE3w2lzOYX9A1zBWvI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Texel: a methodology and an integrated environment for developing automated systems for texture classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sanchez, R.M. ; Espinosa, F.C.</creator><creatorcontrib>Sanchez, R.M. ; Espinosa, F.C.</creatorcontrib><description>The techniques used when building a texture classification system are determined, in most cases, ad hoc. For developing such a system, the most commonly used sequence of steps is: acquisition, preprocessing, feature extraction and classification. For each of them, there exist many options, and the choice of one or more of them influences the rest. The expert has to choose among several kinds of preprocessing tasks, a number of texture analysis methods, and several classifiers. The process of getting a system that provides a good performance is a costly procedure due to the great variety of combinations of processing tasks. In this paper we introduce a methodology for the construction of texture classification systems, primarily focused in natural, random or pseudorandom textures, and a visual tool with a powerful interface that allows us to put it into practice.</description><identifier>ISBN: 9780818685484</identifier><identifier>ISBN: 0818685484</identifier><identifier>DOI: 10.1109/IJSIS.1998.685480</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electronic mail ; Gabor filters ; Histograms ; Image analysis ; Image edge detection ; Image texture analysis ; Machine vision ; Photography ; Quality control ; Reactive power</subject><ispartof>Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174), 1998, p.382-388</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/685480$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/685480$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sanchez, R.M.</creatorcontrib><creatorcontrib>Espinosa, F.C.</creatorcontrib><title>Texel: a methodology and an integrated environment for developing automated systems for texture classification</title><title>Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)</title><addtitle>IJSIS</addtitle><description>The techniques used when building a texture classification system are determined, in most cases, ad hoc. For developing such a system, the most commonly used sequence of steps is: acquisition, preprocessing, feature extraction and classification. For each of them, there exist many options, and the choice of one or more of them influences the rest. The expert has to choose among several kinds of preprocessing tasks, a number of texture analysis methods, and several classifiers. The process of getting a system that provides a good performance is a costly procedure due to the great variety of combinations of processing tasks. In this paper we introduce a methodology for the construction of texture classification systems, primarily focused in natural, random or pseudorandom textures, and a visual tool with a powerful interface that allows us to put it into practice.</description><subject>Electronic mail</subject><subject>Gabor filters</subject><subject>Histograms</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image texture analysis</subject><subject>Machine vision</subject><subject>Photography</subject><subject>Quality control</subject><subject>Reactive power</subject><isbn>9780818685484</isbn><isbn>0818685484</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1998</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1qAyEcxIVSaEn3AdqTL5BUV121txL6kRLoIek5uPo3texqWE1I3r5hk4FhGPgxh0HokZIZpUQ_L75Wi9WMaq1mjRJckRtUaamIomrs_A5VOf-Rs5gWTMt7FNdwhO4FG9xD-U0udWl7wia6s3GIBbaDKeAwxEMYUuwhFuzTgB0coEu7ELfY7EvqRyifcoE-j0CBY9kPgG1ncg4-WFNCig_o1psuQ3XNCfp5f1vPP6fL74_F_HU5DVTyMnWWEduYthHEt7WyDSNOcS3BKdpqAzU1VniQmtW85qCVt62QrfBcUMGoZRP0dNkNALDZDaE3w2lzOYX9A1zBWvI</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Sanchez, R.M.</creator><creator>Espinosa, F.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1998</creationdate><title>Texel: a methodology and an integrated environment for developing automated systems for texture classification</title><author>Sanchez, R.M. ; Espinosa, F.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i174t-dc30c6ab650fb28c630d8497ed81b9ae21ac5fe7932424e98fcb57b5f451531c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Electronic mail</topic><topic>Gabor filters</topic><topic>Histograms</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image texture analysis</topic><topic>Machine vision</topic><topic>Photography</topic><topic>Quality control</topic><topic>Reactive power</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanchez, R.M.</creatorcontrib><creatorcontrib>Espinosa, F.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sanchez, R.M.</au><au>Espinosa, F.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Texel: a methodology and an integrated environment for developing automated systems for texture classification</atitle><btitle>Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)</btitle><stitle>IJSIS</stitle><date>1998</date><risdate>1998</risdate><spage>382</spage><epage>388</epage><pages>382-388</pages><isbn>9780818685484</isbn><isbn>0818685484</isbn><abstract>The techniques used when building a texture classification system are determined, in most cases, ad hoc. For developing such a system, the most commonly used sequence of steps is: acquisition, preprocessing, feature extraction and classification. For each of them, there exist many options, and the choice of one or more of them influences the rest. The expert has to choose among several kinds of preprocessing tasks, a number of texture analysis methods, and several classifiers. The process of getting a system that provides a good performance is a costly procedure due to the great variety of combinations of processing tasks. In this paper we introduce a methodology for the construction of texture classification systems, primarily focused in natural, random or pseudorandom textures, and a visual tool with a powerful interface that allows us to put it into practice.</abstract><pub>IEEE</pub><doi>10.1109/IJSIS.1998.685480</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780818685484
ispartof Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174), 1998, p.382-388
issn
language eng
recordid cdi_ieee_primary_685480
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Electronic mail
Gabor filters
Histograms
Image analysis
Image edge detection
Image texture analysis
Machine vision
Photography
Quality control
Reactive power
title Texel: a methodology and an integrated environment for developing automated systems for texture classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Texel:%20a%20methodology%20and%20an%20integrated%20environment%20for%20developing%20automated%20systems%20for%20texture%20classification&rft.btitle=Proceedings.%20IEEE%20International%20Joint%20Symposia%20on%20Intelligence%20and%20Systems%20(Cat.%20No.98EX174)&rft.au=Sanchez,%20R.M.&rft.date=1998&rft.spage=382&rft.epage=388&rft.pages=382-388&rft.isbn=9780818685484&rft.isbn_list=0818685484&rft_id=info:doi/10.1109/IJSIS.1998.685480&rft_dat=%3Cieee_6IE%3E685480%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i174t-dc30c6ab650fb28c630d8497ed81b9ae21ac5fe7932424e98fcb57b5f451531c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=685480&rfr_iscdi=true