Loading…

Decomposition of permittivity contributions from reflectance using mechanism models

In this paper, we investigate the properties of a complex nonmagnetic material through the reflectance, where the permittivity is described by a mechanism model in which an unknown probability measure is placed on the model parameters. Specifically, we consider whether or not this unknown probabilit...

Full description

Saved in:
Bibliographic Details
Main Authors: Banks, H. T., Catenacci, Jared, Shuhua Hu, Kenz, Zackary R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 372
container_issue
container_start_page 367
container_title
container_volume
creator Banks, H. T.
Catenacci, Jared
Shuhua Hu
Kenz, Zackary R.
description In this paper, we investigate the properties of a complex nonmagnetic material through the reflectance, where the permittivity is described by a mechanism model in which an unknown probability measure is placed on the model parameters. Specifically, we consider whether or not this unknown probability measure can be determined from the reflectance or the derivatives of the reflectance, and we also investigate the effect of measurement noise on the estimation. The numerical results demonstrate that if only the reflectance can be observed, then the distribution form cannot be recovered even in the case where the measurement noise level is small. However, if both the reflectance and the derivative of the reflectance can be observed, then the estimated distribution is reasonably close to the true one even in the case where the measurement noise level is relatively high.
doi_str_mv 10.1109/ACC.2014.6858639
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6858639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6858639</ieee_id><sourcerecordid>6858639</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-b9a1040400fd86a82e4275f216b37728fb38819b8f61baa0dad6dd1ea80efcdb3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheMLbKt7wU3-wNTcZJrHsoxPKLhQwV1JJjca6UyGSSr031uxIGdxFh98HA4hV8DmAMzcLJtmzhnUc6kXWgpzRKZQK2MEV_B-TCZcKF3tCZz8A65PyYSpWlQgwZyTac5fjIExkk3Iyy22qRtSjiWmnqZABxy7WEr8jmVH29SXMbrtL8w0jKmjI4YNtsX2LdJtjv0H7bD9tH3MHe2Sx02-IGfBbjJeHnpG3u7vXpvHavX88NQsV1XkoErljAVW78OC19JqjjVXi8BBOqH2q4MTWoNxOkhw1jJvvfQe0GqGofVOzMj1nzci4noYY2fH3frwjPgBeMRV0Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decomposition of permittivity contributions from reflectance using mechanism models</title><source>IEEE Xplore All Conference Series</source><creator>Banks, H. T. ; Catenacci, Jared ; Shuhua Hu ; Kenz, Zackary R.</creator><creatorcontrib>Banks, H. T. ; Catenacci, Jared ; Shuhua Hu ; Kenz, Zackary R.</creatorcontrib><description>In this paper, we investigate the properties of a complex nonmagnetic material through the reflectance, where the permittivity is described by a mechanism model in which an unknown probability measure is placed on the model parameters. Specifically, we consider whether or not this unknown probability measure can be determined from the reflectance or the derivatives of the reflectance, and we also investigate the effect of measurement noise on the estimation. The numerical results demonstrate that if only the reflectance can be observed, then the distribution form cannot be recovered even in the case where the measurement noise level is small. However, if both the reflectance and the derivative of the reflectance can be observed, then the estimated distribution is reasonably close to the true one even in the case where the measurement noise level is relatively high.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1479932728</identifier><identifier>ISBN: 9781479932726</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 147993271X</identifier><identifier>EISBN: 9781479932740</identifier><identifier>EISBN: 9781479932719</identifier><identifier>EISBN: 1479932744</identifier><identifier>DOI: 10.1109/ACC.2014.6858639</identifier><language>eng</language><publisher>American Automatic Control Council</publisher><subject>Computational methods ; Data models ; Distributed parameter systems ; Estimation ; Least squares approximations ; Materials ; Mathematical model ; Noise level ; Permittivity</subject><ispartof>2014 American Control Conference, 2014, p.367-372</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6858639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6858639$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Banks, H. T.</creatorcontrib><creatorcontrib>Catenacci, Jared</creatorcontrib><creatorcontrib>Shuhua Hu</creatorcontrib><creatorcontrib>Kenz, Zackary R.</creatorcontrib><title>Decomposition of permittivity contributions from reflectance using mechanism models</title><title>2014 American Control Conference</title><addtitle>ACC</addtitle><description>In this paper, we investigate the properties of a complex nonmagnetic material through the reflectance, where the permittivity is described by a mechanism model in which an unknown probability measure is placed on the model parameters. Specifically, we consider whether or not this unknown probability measure can be determined from the reflectance or the derivatives of the reflectance, and we also investigate the effect of measurement noise on the estimation. The numerical results demonstrate that if only the reflectance can be observed, then the distribution form cannot be recovered even in the case where the measurement noise level is small. However, if both the reflectance and the derivative of the reflectance can be observed, then the estimated distribution is reasonably close to the true one even in the case where the measurement noise level is relatively high.</description><subject>Computational methods</subject><subject>Data models</subject><subject>Distributed parameter systems</subject><subject>Estimation</subject><subject>Least squares approximations</subject><subject>Materials</subject><subject>Mathematical model</subject><subject>Noise level</subject><subject>Permittivity</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1479932728</isbn><isbn>9781479932726</isbn><isbn>147993271X</isbn><isbn>9781479932740</isbn><isbn>9781479932719</isbn><isbn>1479932744</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkEtLAzEUheMLbKt7wU3-wNTcZJrHsoxPKLhQwV1JJjca6UyGSSr031uxIGdxFh98HA4hV8DmAMzcLJtmzhnUc6kXWgpzRKZQK2MEV_B-TCZcKF3tCZz8A65PyYSpWlQgwZyTac5fjIExkk3Iyy22qRtSjiWmnqZABxy7WEr8jmVH29SXMbrtL8w0jKmjI4YNtsX2LdJtjv0H7bD9tH3MHe2Sx02-IGfBbjJeHnpG3u7vXpvHavX88NQsV1XkoErljAVW78OC19JqjjVXi8BBOqH2q4MTWoNxOkhw1jJvvfQe0GqGofVOzMj1nzci4noYY2fH3frwjPgBeMRV0Q</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Banks, H. T.</creator><creator>Catenacci, Jared</creator><creator>Shuhua Hu</creator><creator>Kenz, Zackary R.</creator><general>American Automatic Control Council</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20140101</creationdate><title>Decomposition of permittivity contributions from reflectance using mechanism models</title><author>Banks, H. T. ; Catenacci, Jared ; Shuhua Hu ; Kenz, Zackary R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-b9a1040400fd86a82e4275f216b37728fb38819b8f61baa0dad6dd1ea80efcdb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational methods</topic><topic>Data models</topic><topic>Distributed parameter systems</topic><topic>Estimation</topic><topic>Least squares approximations</topic><topic>Materials</topic><topic>Mathematical model</topic><topic>Noise level</topic><topic>Permittivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Banks, H. T.</creatorcontrib><creatorcontrib>Catenacci, Jared</creatorcontrib><creatorcontrib>Shuhua Hu</creatorcontrib><creatorcontrib>Kenz, Zackary R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banks, H. T.</au><au>Catenacci, Jared</au><au>Shuhua Hu</au><au>Kenz, Zackary R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decomposition of permittivity contributions from reflectance using mechanism models</atitle><btitle>2014 American Control Conference</btitle><stitle>ACC</stitle><date>2014-01-01</date><risdate>2014</risdate><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1479932728</isbn><isbn>9781479932726</isbn><eisbn>147993271X</eisbn><eisbn>9781479932740</eisbn><eisbn>9781479932719</eisbn><eisbn>1479932744</eisbn><abstract>In this paper, we investigate the properties of a complex nonmagnetic material through the reflectance, where the permittivity is described by a mechanism model in which an unknown probability measure is placed on the model parameters. Specifically, we consider whether or not this unknown probability measure can be determined from the reflectance or the derivatives of the reflectance, and we also investigate the effect of measurement noise on the estimation. The numerical results demonstrate that if only the reflectance can be observed, then the distribution form cannot be recovered even in the case where the measurement noise level is small. However, if both the reflectance and the derivative of the reflectance can be observed, then the estimated distribution is reasonably close to the true one even in the case where the measurement noise level is relatively high.</abstract><pub>American Automatic Control Council</pub><doi>10.1109/ACC.2014.6858639</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof 2014 American Control Conference, 2014, p.367-372
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_6858639
source IEEE Xplore All Conference Series
subjects Computational methods
Data models
Distributed parameter systems
Estimation
Least squares approximations
Materials
Mathematical model
Noise level
Permittivity
title Decomposition of permittivity contributions from reflectance using mechanism models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decomposition%20of%20permittivity%20contributions%20from%20reflectance%20using%20mechanism%20models&rft.btitle=2014%20American%20Control%20Conference&rft.au=Banks,%20H.%20T.&rft.date=2014-01-01&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1479932728&rft.isbn_list=9781479932726&rft_id=info:doi/10.1109/ACC.2014.6858639&rft.eisbn=147993271X&rft.eisbn_list=9781479932740&rft.eisbn_list=9781479932719&rft.eisbn_list=1479932744&rft_dat=%3Cieee_CHZPO%3E6858639%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i217t-b9a1040400fd86a82e4275f216b37728fb38819b8f61baa0dad6dd1ea80efcdb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6858639&rfr_iscdi=true