Loading…

A data-driven model for wind plant power optimization by yaw control

This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting elec...

Full description

Saved in:
Bibliographic Details
Main Authors: Gebraad, P. M. O., Teeuwisse, F. W., van Wingerden, J. W., Fleming, P. A., Ruben, S. D., Marden, J. R., Pao, L. Y.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production.
ISSN:0743-1619
2378-5861
DOI:10.1109/ACC.2014.6859118