Loading…
A data-driven model for wind plant power optimization by yaw control
This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting elec...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c249t-40c3cf80b1f8256f1ef90ff2d1ec8e4bdbb2a06e1fe8884ada5eab9b926611e53 |
---|---|
cites | |
container_end_page | 3134 |
container_issue | |
container_start_page | 3128 |
container_title | |
container_volume | |
creator | Gebraad, P. M. O. Teeuwisse, F. W. van Wingerden, J. W. Fleming, P. A. Ruben, S. D. Marden, J. R. Pao, L. Y. |
description | This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production. |
doi_str_mv | 10.1109/ACC.2014.6859118 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6859118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6859118</ieee_id><sourcerecordid>6859118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-40c3cf80b1f8256f1ef90ff2d1ec8e4bdbb2a06e1fe8884ada5eab9b926611e53</originalsourceid><addsrcrecordid>eNpFkMtKxDAUQOML7IzuBTf5gdbcNE2TZanjAwbcKLgbkuYGIm1T0mIZv96FA67O4sBZHELugBUATD80bVtwBqKQqtIA6oxsQNRal7yGz3OS8bJWeaUkXPwLri5JxmpR5iBBX5PNPH8xBlpLlpHHhjqzmNyl8I0jHaLDnvqY6BpGR6fejAud4oqJxmkJQ_gxS4gjtUd6NCvt4rik2N-QK2_6GW9P3JKPp917-5Lv355f22afd1zoJResKzuvmAWveCU9oNfMe-4AO4XCOmu5YRLBo1JKGGcqNFZbzaUEwKrckvu_bkDEw5TCYNLxcFpR_gIDEk87</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A data-driven model for wind plant power optimization by yaw control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gebraad, P. M. O. ; Teeuwisse, F. W. ; van Wingerden, J. W. ; Fleming, P. A. ; Ruben, S. D. ; Marden, J. R. ; Pao, L. Y.</creator><creatorcontrib>Gebraad, P. M. O. ; Teeuwisse, F. W. ; van Wingerden, J. W. ; Fleming, P. A. ; Ruben, S. D. ; Marden, J. R. ; Pao, L. Y.</creatorcontrib><description>This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1479932728</identifier><identifier>ISBN: 9781479932726</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 147993271X</identifier><identifier>EISBN: 9781479932740</identifier><identifier>EISBN: 9781479932719</identifier><identifier>EISBN: 1479932744</identifier><identifier>DOI: 10.1109/ACC.2014.6859118</identifier><language>eng</language><publisher>American Automatic Control Council</publisher><subject>Computational modeling ; Modeling and simulation ; Optimization ; Parametric statistics ; Rotors ; Wind speed ; Wind turbines</subject><ispartof>2014 American Control Conference, 2014, p.3128-3134</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-40c3cf80b1f8256f1ef90ff2d1ec8e4bdbb2a06e1fe8884ada5eab9b926611e53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6859118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6859118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gebraad, P. M. O.</creatorcontrib><creatorcontrib>Teeuwisse, F. W.</creatorcontrib><creatorcontrib>van Wingerden, J. W.</creatorcontrib><creatorcontrib>Fleming, P. A.</creatorcontrib><creatorcontrib>Ruben, S. D.</creatorcontrib><creatorcontrib>Marden, J. R.</creatorcontrib><creatorcontrib>Pao, L. Y.</creatorcontrib><title>A data-driven model for wind plant power optimization by yaw control</title><title>2014 American Control Conference</title><addtitle>ACC</addtitle><description>This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production.</description><subject>Computational modeling</subject><subject>Modeling and simulation</subject><subject>Optimization</subject><subject>Parametric statistics</subject><subject>Rotors</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1479932728</isbn><isbn>9781479932726</isbn><isbn>147993271X</isbn><isbn>9781479932740</isbn><isbn>9781479932719</isbn><isbn>1479932744</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkMtKxDAUQOML7IzuBTf5gdbcNE2TZanjAwbcKLgbkuYGIm1T0mIZv96FA67O4sBZHELugBUATD80bVtwBqKQqtIA6oxsQNRal7yGz3OS8bJWeaUkXPwLri5JxmpR5iBBX5PNPH8xBlpLlpHHhjqzmNyl8I0jHaLDnvqY6BpGR6fejAud4oqJxmkJQ_gxS4gjtUd6NCvt4rik2N-QK2_6GW9P3JKPp917-5Lv355f22afd1zoJResKzuvmAWveCU9oNfMe-4AO4XCOmu5YRLBo1JKGGcqNFZbzaUEwKrckvu_bkDEw5TCYNLxcFpR_gIDEk87</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Gebraad, P. M. O.</creator><creator>Teeuwisse, F. W.</creator><creator>van Wingerden, J. W.</creator><creator>Fleming, P. A.</creator><creator>Ruben, S. D.</creator><creator>Marden, J. R.</creator><creator>Pao, L. Y.</creator><general>American Automatic Control Council</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201406</creationdate><title>A data-driven model for wind plant power optimization by yaw control</title><author>Gebraad, P. M. O. ; Teeuwisse, F. W. ; van Wingerden, J. W. ; Fleming, P. A. ; Ruben, S. D. ; Marden, J. R. ; Pao, L. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-40c3cf80b1f8256f1ef90ff2d1ec8e4bdbb2a06e1fe8884ada5eab9b926611e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational modeling</topic><topic>Modeling and simulation</topic><topic>Optimization</topic><topic>Parametric statistics</topic><topic>Rotors</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>online_resources</toplevel><creatorcontrib>Gebraad, P. M. O.</creatorcontrib><creatorcontrib>Teeuwisse, F. W.</creatorcontrib><creatorcontrib>van Wingerden, J. W.</creatorcontrib><creatorcontrib>Fleming, P. A.</creatorcontrib><creatorcontrib>Ruben, S. D.</creatorcontrib><creatorcontrib>Marden, J. R.</creatorcontrib><creatorcontrib>Pao, L. Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gebraad, P. M. O.</au><au>Teeuwisse, F. W.</au><au>van Wingerden, J. W.</au><au>Fleming, P. A.</au><au>Ruben, S. D.</au><au>Marden, J. R.</au><au>Pao, L. Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A data-driven model for wind plant power optimization by yaw control</atitle><btitle>2014 American Control Conference</btitle><stitle>ACC</stitle><date>2014-06</date><risdate>2014</risdate><spage>3128</spage><epage>3134</epage><pages>3128-3134</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1479932728</isbn><isbn>9781479932726</isbn><eisbn>147993271X</eisbn><eisbn>9781479932740</eisbn><eisbn>9781479932719</eisbn><eisbn>1479932744</eisbn><abstract>This paper presents a novel parametric model that will be used to optimize the yaw settings of wind turbines in a wind plant for improved electrical energy production of the whole wind plant. The model predicts the effective steady-state flow velocities at each turbine, as well as the resulting electrical energy productions, as a function of the axial induction and the yaw angle of the different rotors. The model has a limited number of parameters that are estimated based on data. Moreover, it is shown how this model can be used to optimize the yaw settings using a game-theoretic approach. In a case study we demonstrate that our novel parametric model fits the data generated by a high-fidelity computational fluid dynamics model of a small wind plant, and that the data-driven yaw optimization control has great potential to increase the wind plant's electrical energy production.</abstract><pub>American Automatic Control Council</pub><doi>10.1109/ACC.2014.6859118</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | 2014 American Control Conference, 2014, p.3128-3134 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_6859118 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Modeling and simulation Optimization Parametric statistics Rotors Wind speed Wind turbines |
title | A data-driven model for wind plant power optimization by yaw control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20data-driven%20model%20for%20wind%20plant%20power%20optimization%20by%20yaw%20control&rft.btitle=2014%20American%20Control%20Conference&rft.au=Gebraad,%20P.%20M.%20O.&rft.date=2014-06&rft.spage=3128&rft.epage=3134&rft.pages=3128-3134&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1479932728&rft.isbn_list=9781479932726&rft_id=info:doi/10.1109/ACC.2014.6859118&rft.eisbn=147993271X&rft.eisbn_list=9781479932740&rft.eisbn_list=9781479932719&rft.eisbn_list=1479932744&rft_dat=%3Cieee_6IE%3E6859118%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-40c3cf80b1f8256f1ef90ff2d1ec8e4bdbb2a06e1fe8884ada5eab9b926611e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6859118&rfr_iscdi=true |