Loading…
Highly maneuverable target tracking based on efficient propagation of model hypotheses
This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniq...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 0259 |
container_issue | |
container_start_page | 0255 |
container_title | |
container_volume | |
creator | Lucena, Marcelo Guimaraes, Alberto Pinto, Ernesto |
description | This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement. |
doi_str_mv | 10.1109/RADAR.2014.6875594 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6875594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6875594</ieee_id><sourcerecordid>6875594</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63</originalsourceid><addsrcrecordid>eNotkNtKw0AYhFdRMK2-gN7sC6TuebOXoR4qFISi3pZ_k3_T1TQJySr07a3YmxmYj5mLIeSWswXnzN1vyodysxCMq4UprNZOnZEZV9Y5waSy5yQT0upcS15ckOzYsLk22l2R2TR9MqblEWfkYxWbXXuge-jw-wdH8C3SBGODiaYRqq_YNdTDhDXtO4ohxCpil-gw9gM0kOIx7QPd9zW2dHcY-rTDCadrchmgnfDm5HPy_vT4tlzl69fnl2W5ziO3OuWu0NpwVYMxLFRCenBKoqmc9oWwjDvvalAehHTFnxqBXhUaPeoANhg5J3f_uxERt8MY9zAetqc_5C_5RlQH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</creator><creatorcontrib>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</creatorcontrib><description>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</description><identifier>ISSN: 1097-5659</identifier><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 1479920347</identifier><identifier>EISBN: 9781479920341</identifier><identifier>EISBN: 9781479920358</identifier><identifier>EISBN: 1479920355</identifier><identifier>DOI: 10.1109/RADAR.2014.6875594</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computational modeling ; Merging ; Radar tracking ; Signal processing algorithms ; Target tracking ; Trajectory</subject><ispartof>2014 IEEE Radar Conference, 2014, p.0255-0259</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6875594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6875594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lucena, Marcelo</creatorcontrib><creatorcontrib>Guimaraes, Alberto</creatorcontrib><creatorcontrib>Pinto, Ernesto</creatorcontrib><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><title>2014 IEEE Radar Conference</title><addtitle>RADAR</addtitle><description>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</description><subject>Approximation algorithms</subject><subject>Computational modeling</subject><subject>Merging</subject><subject>Radar tracking</subject><subject>Signal processing algorithms</subject><subject>Target tracking</subject><subject>Trajectory</subject><issn>1097-5659</issn><issn>2375-5318</issn><isbn>1479920347</isbn><isbn>9781479920341</isbn><isbn>9781479920358</isbn><isbn>1479920355</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AYhFdRMK2-gN7sC6TuebOXoR4qFISi3pZ_k3_T1TQJySr07a3YmxmYj5mLIeSWswXnzN1vyodysxCMq4UprNZOnZEZV9Y5waSy5yQT0upcS15ckOzYsLk22l2R2TR9MqblEWfkYxWbXXuge-jw-wdH8C3SBGODiaYRqq_YNdTDhDXtO4ohxCpil-gw9gM0kOIx7QPd9zW2dHcY-rTDCadrchmgnfDm5HPy_vT4tlzl69fnl2W5ziO3OuWu0NpwVYMxLFRCenBKoqmc9oWwjDvvalAehHTFnxqBXhUaPeoANhg5J3f_uxERt8MY9zAetqc_5C_5RlQH</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Lucena, Marcelo</creator><creator>Guimaraes, Alberto</creator><creator>Pinto, Ernesto</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><author>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation algorithms</topic><topic>Computational modeling</topic><topic>Merging</topic><topic>Radar tracking</topic><topic>Signal processing algorithms</topic><topic>Target tracking</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Lucena, Marcelo</creatorcontrib><creatorcontrib>Guimaraes, Alberto</creatorcontrib><creatorcontrib>Pinto, Ernesto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lucena, Marcelo</au><au>Guimaraes, Alberto</au><au>Pinto, Ernesto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Highly maneuverable target tracking based on efficient propagation of model hypotheses</atitle><btitle>2014 IEEE Radar Conference</btitle><stitle>RADAR</stitle><date>2014-05</date><risdate>2014</risdate><spage>0255</spage><epage>0259</epage><pages>0255-0259</pages><issn>1097-5659</issn><eissn>2375-5318</eissn><eisbn>1479920347</eisbn><eisbn>9781479920341</eisbn><eisbn>9781479920358</eisbn><eisbn>1479920355</eisbn><abstract>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2014.6875594</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1097-5659 |
ispartof | 2014 IEEE Radar Conference, 2014, p.0255-0259 |
issn | 1097-5659 2375-5318 |
language | eng |
recordid | cdi_ieee_primary_6875594 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation algorithms Computational modeling Merging Radar tracking Signal processing algorithms Target tracking Trajectory |
title | Highly maneuverable target tracking based on efficient propagation of model hypotheses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Highly%20maneuverable%20target%20tracking%20based%20on%20efficient%20propagation%20of%20model%20hypotheses&rft.btitle=2014%20IEEE%20Radar%20Conference&rft.au=Lucena,%20Marcelo&rft.date=2014-05&rft.spage=0255&rft.epage=0259&rft.pages=0255-0259&rft.issn=1097-5659&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RADAR.2014.6875594&rft.eisbn=1479920347&rft.eisbn_list=9781479920341&rft.eisbn_list=9781479920358&rft.eisbn_list=1479920355&rft_dat=%3Cieee_6IE%3E6875594%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6875594&rfr_iscdi=true |