Loading…

Highly maneuverable target tracking based on efficient propagation of model hypotheses

This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniq...

Full description

Saved in:
Bibliographic Details
Main Authors: Lucena, Marcelo, Guimaraes, Alberto, Pinto, Ernesto
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 0259
container_issue
container_start_page 0255
container_title
container_volume
creator Lucena, Marcelo
Guimaraes, Alberto
Pinto, Ernesto
description This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.
doi_str_mv 10.1109/RADAR.2014.6875594
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6875594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6875594</ieee_id><sourcerecordid>6875594</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63</originalsourceid><addsrcrecordid>eNotkNtKw0AYhFdRMK2-gN7sC6TuebOXoR4qFISi3pZ_k3_T1TQJySr07a3YmxmYj5mLIeSWswXnzN1vyodysxCMq4UprNZOnZEZV9Y5waSy5yQT0upcS15ckOzYsLk22l2R2TR9MqblEWfkYxWbXXuge-jw-wdH8C3SBGODiaYRqq_YNdTDhDXtO4ohxCpil-gw9gM0kOIx7QPd9zW2dHcY-rTDCadrchmgnfDm5HPy_vT4tlzl69fnl2W5ziO3OuWu0NpwVYMxLFRCenBKoqmc9oWwjDvvalAehHTFnxqBXhUaPeoANhg5J3f_uxERt8MY9zAetqc_5C_5RlQH</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</creator><creatorcontrib>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</creatorcontrib><description>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</description><identifier>ISSN: 1097-5659</identifier><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 1479920347</identifier><identifier>EISBN: 9781479920341</identifier><identifier>EISBN: 9781479920358</identifier><identifier>EISBN: 1479920355</identifier><identifier>DOI: 10.1109/RADAR.2014.6875594</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Computational modeling ; Merging ; Radar tracking ; Signal processing algorithms ; Target tracking ; Trajectory</subject><ispartof>2014 IEEE Radar Conference, 2014, p.0255-0259</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6875594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6875594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lucena, Marcelo</creatorcontrib><creatorcontrib>Guimaraes, Alberto</creatorcontrib><creatorcontrib>Pinto, Ernesto</creatorcontrib><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><title>2014 IEEE Radar Conference</title><addtitle>RADAR</addtitle><description>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</description><subject>Approximation algorithms</subject><subject>Computational modeling</subject><subject>Merging</subject><subject>Radar tracking</subject><subject>Signal processing algorithms</subject><subject>Target tracking</subject><subject>Trajectory</subject><issn>1097-5659</issn><issn>2375-5318</issn><isbn>1479920347</isbn><isbn>9781479920341</isbn><isbn>9781479920358</isbn><isbn>1479920355</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AYhFdRMK2-gN7sC6TuebOXoR4qFISi3pZ_k3_T1TQJySr07a3YmxmYj5mLIeSWswXnzN1vyodysxCMq4UprNZOnZEZV9Y5waSy5yQT0upcS15ckOzYsLk22l2R2TR9MqblEWfkYxWbXXuge-jw-wdH8C3SBGODiaYRqq_YNdTDhDXtO4ohxCpil-gw9gM0kOIx7QPd9zW2dHcY-rTDCadrchmgnfDm5HPy_vT4tlzl69fnl2W5ziO3OuWu0NpwVYMxLFRCenBKoqmc9oWwjDvvalAehHTFnxqBXhUaPeoANhg5J3f_uxERt8MY9zAetqc_5C_5RlQH</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Lucena, Marcelo</creator><creator>Guimaraes, Alberto</creator><creator>Pinto, Ernesto</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201405</creationdate><title>Highly maneuverable target tracking based on efficient propagation of model hypotheses</title><author>Lucena, Marcelo ; Guimaraes, Alberto ; Pinto, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation algorithms</topic><topic>Computational modeling</topic><topic>Merging</topic><topic>Radar tracking</topic><topic>Signal processing algorithms</topic><topic>Target tracking</topic><topic>Trajectory</topic><toplevel>online_resources</toplevel><creatorcontrib>Lucena, Marcelo</creatorcontrib><creatorcontrib>Guimaraes, Alberto</creatorcontrib><creatorcontrib>Pinto, Ernesto</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lucena, Marcelo</au><au>Guimaraes, Alberto</au><au>Pinto, Ernesto</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Highly maneuverable target tracking based on efficient propagation of model hypotheses</atitle><btitle>2014 IEEE Radar Conference</btitle><stitle>RADAR</stitle><date>2014-05</date><risdate>2014</risdate><spage>0255</spage><epage>0259</epage><pages>0255-0259</pages><issn>1097-5659</issn><eissn>2375-5318</eissn><eisbn>1479920347</eisbn><eisbn>9781479920341</eisbn><eisbn>9781479920358</eisbn><eisbn>1479920355</eisbn><abstract>This paper presents an algorithm based on the multiple model approach for tracking highly maneuverable targets. The proposed method aims at propagating a low number of model hypotheses while still yielding low estimation errors compared to other multiple model algorithms. Merging and pruning techniques are used to keep very small sets of model sequences matched with the target dynamics. Simulation results show that the proposed method is able to attain superior performance during periods of no maneuver compared to the Interacting Multiple Model algorithm as well as when abrupt changes take place in the target movement.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2014.6875594</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1097-5659
ispartof 2014 IEEE Radar Conference, 2014, p.0255-0259
issn 1097-5659
2375-5318
language eng
recordid cdi_ieee_primary_6875594
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Computational modeling
Merging
Radar tracking
Signal processing algorithms
Target tracking
Trajectory
title Highly maneuverable target tracking based on efficient propagation of model hypotheses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Highly%20maneuverable%20target%20tracking%20based%20on%20efficient%20propagation%20of%20model%20hypotheses&rft.btitle=2014%20IEEE%20Radar%20Conference&rft.au=Lucena,%20Marcelo&rft.date=2014-05&rft.spage=0255&rft.epage=0259&rft.pages=0255-0259&rft.issn=1097-5659&rft.eissn=2375-5318&rft_id=info:doi/10.1109/RADAR.2014.6875594&rft.eisbn=1479920347&rft.eisbn_list=9781479920341&rft.eisbn_list=9781479920358&rft.eisbn_list=1479920355&rft_dat=%3Cieee_6IE%3E6875594%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-9855614da660fc23ba943e6c95b827019b9da4ba2398ba2362eb485ebe5fa7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6875594&rfr_iscdi=true