Loading…
Development of a Gas-Fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies
A gas-fed capillary plasma source has been developed to study plasma-surface interactions under pulsed high pressure arc conditions, without the use of an exploding fuse wire or ablative liner. A nonintrusive preionization source has been developed to break down relatively large interelectrode gaps...
Saved in:
Published in: | IEEE transactions on plasma science 2014-10, Vol.42 (10), p.3245-3252 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A gas-fed capillary plasma source has been developed to study plasma-surface interactions under pulsed high pressure arc conditions, without the use of an exploding fuse wire or ablative liner. A nonintrusive preionization source has been developed to break down relatively large interelectrode gaps at low charge voltages of 2-6 kV. The preionization source comprises a nonequilibrium surface streamer discharge that forms a conducting channel through which the main thermal arc discharge is initiated. The arc electron temperature and number density are estimated to be T e ~ 1-2 eV and n e ~ 10 23 m -3 . Silicon and sapphire samples were exposed to the arc plasma and revealed deposition of electrode and wall materials. Substitution of Elkonite 50W3 for brass electrodes reduced plasma contamination to acceptable levels. The plasma-material interactions were examined and quantified using scanning electron microscopy and energy dispersive X-ray spectroscopy. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2014.2344974 |