Loading…
Hydraulic manipulator virtual decomposition control with performance analysis using low-cost MEMS sensors
This paper presents closed-loop motion control of a heavy-duty hydraulic manipulator using non-linear model-based Virtual Decomposition Control (VDC), where the motion feedback is estimated solely with low-cost micro-electromechanical systems (MEMS) inertial sensors. By virtually decomposing the str...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents closed-loop motion control of a heavy-duty hydraulic manipulator using non-linear model-based Virtual Decomposition Control (VDC), where the motion feedback is estimated solely with low-cost micro-electromechanical systems (MEMS) inertial sensors. By virtually decomposing the strongly non-linear and dynamically cross-coupled manipulator system into individually controlled subsystems, a significant improvement in overall control performance is achieved. The controller performance is analysed using planar Cartesian end-effector motion. The experiments show that the stability-guaranteed VDC approach based on low-cost MEMS sensor feedback yields a high-performance control solution: with a 0.85 m/s maximum velocity, the end-effector has a peak tracking error of 13 mm, which is a notable improvement by a factor of 3.6 compared to our previous work based on linear state feedback control. |
---|---|
ISSN: | 2159-6247 2159-6255 |
DOI: | 10.1109/AIM.2014.6878196 |