Loading…
Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine
In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification metho...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1633 |
container_issue | |
container_start_page | 1628 |
container_title | |
container_volume | |
creator | Zhongliang Li Giurgea, Stefan Outbib, Rachid Hissel, Daniel |
description | In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach. |
doi_str_mv | 10.1109/AIM.2014.6878317 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6878317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6878317</ieee_id><sourcerecordid>6878317</sourcerecordid><originalsourceid>FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhKMoWGrvgpf8ga35aDbJsZRWCy160HN5s3njRvaLzbbQk3_dRYunGWaY5zCEPHA255zZp-V2PxeML-a50UZyfUVmVhu-0NYqLXN-TSaCK5vlQqmbf7_Qd2SW0hdjjDOjhJAT8r2BYzVQH-GzaVNMFBpPm_aEFQ2_zXDukHocsBhi29DQ9vRtvd-saDqnAWvqIKGnY5O6EvtYQJWlEroxq8d57CrMigpSounYdW0_0NNIGiE1FGVs8J7cBqgSzi46JR-b9fvqJdu9Pm9Xy11WCsWHzAaJ1jMl0LmcKTSWAzoNOoD1Rml0Ms-RcyGMt5Azh9I7yAtnrIUQgpySxz9uRMRD18ca-vPhcp_8AYCiZJc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><source>IEEE Xplore All Conference Series</source><creator>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</creator><creatorcontrib>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</creatorcontrib><description>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</description><identifier>ISSN: 2159-6247</identifier><identifier>EISSN: 2159-6255</identifier><identifier>EISBN: 9781479957361</identifier><identifier>EISBN: 1479957364</identifier><identifier>DOI: 10.1109/AIM.2014.6878317</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault diagnosis ; Feature extraction ; Fuel cells ; Support vector machines ; Training ; Vectors</subject><ispartof>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, p.1628-1633</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6878317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6878317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhongliang Li</creatorcontrib><creatorcontrib>Giurgea, Stefan</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Hissel, Daniel</creatorcontrib><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><title>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics</title><addtitle>AIM</addtitle><description>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</description><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Fuel cells</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Vectors</subject><issn>2159-6247</issn><issn>2159-6255</issn><isbn>9781479957361</isbn><isbn>1479957364</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE1LAzEYhKMoWGrvgpf8ga35aDbJsZRWCy160HN5s3njRvaLzbbQk3_dRYunGWaY5zCEPHA255zZp-V2PxeML-a50UZyfUVmVhu-0NYqLXN-TSaCK5vlQqmbf7_Qd2SW0hdjjDOjhJAT8r2BYzVQH-GzaVNMFBpPm_aEFQ2_zXDukHocsBhi29DQ9vRtvd-saDqnAWvqIKGnY5O6EvtYQJWlEroxq8d57CrMigpSounYdW0_0NNIGiE1FGVs8J7cBqgSzi46JR-b9fvqJdu9Pm9Xy11WCsWHzAaJ1jMl0LmcKTSWAzoNOoD1Rml0Ms-RcyGMt5Azh9I7yAtnrIUQgpySxz9uRMRD18ca-vPhcp_8AYCiZJc</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Zhongliang Li</creator><creator>Giurgea, Stefan</creator><creator>Outbib, Rachid</creator><creator>Hissel, Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><author>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Fuel cells</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhongliang Li</creatorcontrib><creatorcontrib>Giurgea, Stefan</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Hissel, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhongliang Li</au><au>Giurgea, Stefan</au><au>Outbib, Rachid</au><au>Hissel, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</atitle><btitle>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics</btitle><stitle>AIM</stitle><date>2014-07</date><risdate>2014</risdate><spage>1628</spage><epage>1633</epage><pages>1628-1633</pages><issn>2159-6247</issn><eissn>2159-6255</eissn><eisbn>9781479957361</eisbn><eisbn>1479957364</eisbn><abstract>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</abstract><pub>IEEE</pub><doi>10.1109/AIM.2014.6878317</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2159-6247 |
ispartof | 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, p.1628-1633 |
issn | 2159-6247 2159-6255 |
language | eng |
recordid | cdi_ieee_primary_6878317 |
source | IEEE Xplore All Conference Series |
subjects | Fault diagnosis Feature extraction Fuel cells Support vector machines Training Vectors |
title | Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20and%20novel%20fault%20type%20detection%20for%20PEMFC%20system%20based%20on%20spherical-shaped%20multiple-class%20support%20vector%20machine&rft.btitle=2014%20IEEE/ASME%20International%20Conference%20on%20Advanced%20Intelligent%20Mechatronics&rft.au=Zhongliang%20Li&rft.date=2014-07&rft.spage=1628&rft.epage=1633&rft.pages=1628-1633&rft.issn=2159-6247&rft.eissn=2159-6255&rft_id=info:doi/10.1109/AIM.2014.6878317&rft.eisbn=9781479957361&rft.eisbn_list=1479957364&rft_dat=%3Cieee_CHZPO%3E6878317%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6878317&rfr_iscdi=true |