Loading…

Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine

In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification metho...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhongliang Li, Giurgea, Stefan, Outbib, Rachid, Hissel, Daniel
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1633
container_issue
container_start_page 1628
container_title
container_volume
creator Zhongliang Li
Giurgea, Stefan
Outbib, Rachid
Hissel, Daniel
description In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.
doi_str_mv 10.1109/AIM.2014.6878317
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6878317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6878317</ieee_id><sourcerecordid>6878317</sourcerecordid><originalsourceid>FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhKMoWGrvgpf8ga35aDbJsZRWCy160HN5s3njRvaLzbbQk3_dRYunGWaY5zCEPHA255zZp-V2PxeML-a50UZyfUVmVhu-0NYqLXN-TSaCK5vlQqmbf7_Qd2SW0hdjjDOjhJAT8r2BYzVQH-GzaVNMFBpPm_aEFQ2_zXDukHocsBhi29DQ9vRtvd-saDqnAWvqIKGnY5O6EvtYQJWlEroxq8d57CrMigpSounYdW0_0NNIGiE1FGVs8J7cBqgSzi46JR-b9fvqJdu9Pm9Xy11WCsWHzAaJ1jMl0LmcKTSWAzoNOoD1Rml0Ms-RcyGMt5Azh9I7yAtnrIUQgpySxz9uRMRD18ca-vPhcp_8AYCiZJc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><source>IEEE Xplore All Conference Series</source><creator>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</creator><creatorcontrib>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</creatorcontrib><description>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</description><identifier>ISSN: 2159-6247</identifier><identifier>EISSN: 2159-6255</identifier><identifier>EISBN: 9781479957361</identifier><identifier>EISBN: 1479957364</identifier><identifier>DOI: 10.1109/AIM.2014.6878317</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault diagnosis ; Feature extraction ; Fuel cells ; Support vector machines ; Training ; Vectors</subject><ispartof>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, p.1628-1633</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6878317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6878317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhongliang Li</creatorcontrib><creatorcontrib>Giurgea, Stefan</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Hissel, Daniel</creatorcontrib><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><title>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics</title><addtitle>AIM</addtitle><description>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</description><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Fuel cells</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Vectors</subject><issn>2159-6247</issn><issn>2159-6255</issn><isbn>9781479957361</isbn><isbn>1479957364</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE1LAzEYhKMoWGrvgpf8ga35aDbJsZRWCy160HN5s3njRvaLzbbQk3_dRYunGWaY5zCEPHA255zZp-V2PxeML-a50UZyfUVmVhu-0NYqLXN-TSaCK5vlQqmbf7_Qd2SW0hdjjDOjhJAT8r2BYzVQH-GzaVNMFBpPm_aEFQ2_zXDukHocsBhi29DQ9vRtvd-saDqnAWvqIKGnY5O6EvtYQJWlEroxq8d57CrMigpSounYdW0_0NNIGiE1FGVs8J7cBqgSzi46JR-b9fvqJdu9Pm9Xy11WCsWHzAaJ1jMl0LmcKTSWAzoNOoD1Rml0Ms-RcyGMt5Azh9I7yAtnrIUQgpySxz9uRMRD18ca-vPhcp_8AYCiZJc</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Zhongliang Li</creator><creator>Giurgea, Stefan</creator><creator>Outbib, Rachid</creator><creator>Hissel, Daniel</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</title><author>Zhongliang Li ; Giurgea, Stefan ; Outbib, Rachid ; Hissel, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Fuel cells</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhongliang Li</creatorcontrib><creatorcontrib>Giurgea, Stefan</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Hissel, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhongliang Li</au><au>Giurgea, Stefan</au><au>Outbib, Rachid</au><au>Hissel, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine</atitle><btitle>2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics</btitle><stitle>AIM</stitle><date>2014-07</date><risdate>2014</risdate><spage>1628</spage><epage>1633</epage><pages>1628-1633</pages><issn>2159-6247</issn><eissn>2159-6255</eissn><eisbn>9781479957361</eisbn><eisbn>1479957364</eisbn><abstract>In this paper, a data-based strategy is proposed for PEMFC (polymer electrolyte membrane fuel cell) diagnosis. In the strategy, the feature extraction method Fisher Discriminant Analysis (FDA) is used firstly to extract the features from individual cell voltages. After that, the classification method Spherical-Shaped Multiple-class Support Vector Machine (SSM-SVM) is used to classify the extracted features to various classes related to health states. The potential novel failure mode can be detected in the procedure. Experiments on a 40-cell stack are dedicated to verify the approach.</abstract><pub>IEEE</pub><doi>10.1109/AIM.2014.6878317</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-6247
ispartof 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2014, p.1628-1633
issn 2159-6247
2159-6255
language eng
recordid cdi_ieee_primary_6878317
source IEEE Xplore All Conference Series
subjects Fault diagnosis
Feature extraction
Fuel cells
Support vector machines
Training
Vectors
title Fault diagnosis and novel fault type detection for PEMFC system based on spherical-shaped multiple-class support vector machine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20and%20novel%20fault%20type%20detection%20for%20PEMFC%20system%20based%20on%20spherical-shaped%20multiple-class%20support%20vector%20machine&rft.btitle=2014%20IEEE/ASME%20International%20Conference%20on%20Advanced%20Intelligent%20Mechatronics&rft.au=Zhongliang%20Li&rft.date=2014-07&rft.spage=1628&rft.epage=1633&rft.pages=1628-1633&rft.issn=2159-6247&rft.eissn=2159-6255&rft_id=info:doi/10.1109/AIM.2014.6878317&rft.eisbn=9781479957361&rft.eisbn_list=1479957364&rft_dat=%3Cieee_CHZPO%3E6878317%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h251t-9f3e9d052ebb605e891aeb7a7fa9d857eb366e11228d9a60be3dba6cb899afff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6878317&rfr_iscdi=true