Loading…
A background modeling method for videos based on weighted statistical classification
In the field of intelligent video surveillance, foreground detection, moving target tracking and target recognition are the key technologies. They play an important role in target behavior analysis and understanding. In this paper a background modeling method based on weighted statistical classifica...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 462 |
container_issue | |
container_start_page | 456 |
container_title | |
container_volume | 1 |
creator | Jiang-Qin Gui Jian-Wei Zhang Li-Qiang Hu Ye Wen-Zhong Yong-Hui Li Dong-Fa Gao |
description | In the field of intelligent video surveillance, foreground detection, moving target tracking and target recognition are the key technologies. They play an important role in target behavior analysis and understanding. In this paper a background modeling method based on weighted statistical classification is proposed. As a non-parametric background model, it uses several state categories to express multiple states of a background pixel. It does not require the background pixels to obey Gaussian distribution and needs no training. The weights are updated according to the matching history of the background pixel. The background state is determined by a threshold. Experiment results show that it obtains excellent detection results and real-time detection speed in complex scenes. |
doi_str_mv | 10.1109/ICMLC.2013.6890508 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6890508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6890508</ieee_id><sourcerecordid>6890508</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c6f9b99b3c79036c5916992e7df7024a1714c39095ea67ce9774aef7e536fe6b3</originalsourceid><addsrcrecordid>eNotkM1KxDAUhSMoOI7zArrJC7QmTZv0Lofiz0DFzQjuhjS56UTbRpqo-PYWnLM53-LjLA4hN5zlnDO42zXPbZMXjItc1sAqVp-RK14qAFZIVp-TVcEly7gQb5dkE-M7W6LKsga-Ivst7bT56OfwNVk6BouDn3o6YjoGS12Y6be3GOJiRbQ0TPQHfX9MC8ekk4_JGz1QM-gYvVs4-TBdkwunh4ibU6_J68P9vnnK2pfHXbNtM89VlTIjHXQAnTAKmJCmAi4BClTWKVaUmiteGgEMKtRSGQSlSo1OYSWkQ9mJNbn93_WIePic_ajn38PpBPEHeu9Rlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A background modeling method for videos based on weighted statistical classification</title><source>IEEE Xplore All Conference Series</source><creator>Jiang-Qin Gui ; Jian-Wei Zhang ; Li-Qiang Hu ; Ye Wen-Zhong ; Yong-Hui Li ; Dong-Fa Gao</creator><creatorcontrib>Jiang-Qin Gui ; Jian-Wei Zhang ; Li-Qiang Hu ; Ye Wen-Zhong ; Yong-Hui Li ; Dong-Fa Gao</creatorcontrib><description>In the field of intelligent video surveillance, foreground detection, moving target tracking and target recognition are the key technologies. They play an important role in target behavior analysis and understanding. In this paper a background modeling method based on weighted statistical classification is proposed. As a non-parametric background model, it uses several state categories to express multiple states of a background pixel. It does not require the background pixels to obey Gaussian distribution and needs no training. The weights are updated according to the matching history of the background pixel. The background state is determined by a threshold. Experiment results show that it obtains excellent detection results and real-time detection speed in complex scenes.</description><identifier>ISSN: 2160-133X</identifier><identifier>EISBN: 1479902608</identifier><identifier>EISBN: 9781479902606</identifier><identifier>DOI: 10.1109/ICMLC.2013.6890508</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; background modeling ; Foreground detection ; Gaussian mixture model ; no-parameter background modeling</subject><ispartof>2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.1, p.456-462</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6890508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6890508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang-Qin Gui</creatorcontrib><creatorcontrib>Jian-Wei Zhang</creatorcontrib><creatorcontrib>Li-Qiang Hu</creatorcontrib><creatorcontrib>Ye Wen-Zhong</creatorcontrib><creatorcontrib>Yong-Hui Li</creatorcontrib><creatorcontrib>Dong-Fa Gao</creatorcontrib><title>A background modeling method for videos based on weighted statistical classification</title><title>2013 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>In the field of intelligent video surveillance, foreground detection, moving target tracking and target recognition are the key technologies. They play an important role in target behavior analysis and understanding. In this paper a background modeling method based on weighted statistical classification is proposed. As a non-parametric background model, it uses several state categories to express multiple states of a background pixel. It does not require the background pixels to obey Gaussian distribution and needs no training. The weights are updated according to the matching history of the background pixel. The background state is determined by a threshold. Experiment results show that it obtains excellent detection results and real-time detection speed in complex scenes.</description><subject>Abstracts</subject><subject>background modeling</subject><subject>Foreground detection</subject><subject>Gaussian mixture model</subject><subject>no-parameter background modeling</subject><issn>2160-133X</issn><isbn>1479902608</isbn><isbn>9781479902606</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KxDAUhSMoOI7zArrJC7QmTZv0Lofiz0DFzQjuhjS56UTbRpqo-PYWnLM53-LjLA4hN5zlnDO42zXPbZMXjItc1sAqVp-RK14qAFZIVp-TVcEly7gQb5dkE-M7W6LKsga-Ivst7bT56OfwNVk6BouDn3o6YjoGS12Y6be3GOJiRbQ0TPQHfX9MC8ekk4_JGz1QM-gYvVs4-TBdkwunh4ibU6_J68P9vnnK2pfHXbNtM89VlTIjHXQAnTAKmJCmAi4BClTWKVaUmiteGgEMKtRSGQSlSo1OYSWkQ9mJNbn93_WIePic_ajn38PpBPEHeu9Rlg</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Jiang-Qin Gui</creator><creator>Jian-Wei Zhang</creator><creator>Li-Qiang Hu</creator><creator>Ye Wen-Zhong</creator><creator>Yong-Hui Li</creator><creator>Dong-Fa Gao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>A background modeling method for videos based on weighted statistical classification</title><author>Jiang-Qin Gui ; Jian-Wei Zhang ; Li-Qiang Hu ; Ye Wen-Zhong ; Yong-Hui Li ; Dong-Fa Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c6f9b99b3c79036c5916992e7df7024a1714c39095ea67ce9774aef7e536fe6b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracts</topic><topic>background modeling</topic><topic>Foreground detection</topic><topic>Gaussian mixture model</topic><topic>no-parameter background modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang-Qin Gui</creatorcontrib><creatorcontrib>Jian-Wei Zhang</creatorcontrib><creatorcontrib>Li-Qiang Hu</creatorcontrib><creatorcontrib>Ye Wen-Zhong</creatorcontrib><creatorcontrib>Yong-Hui Li</creatorcontrib><creatorcontrib>Dong-Fa Gao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang-Qin Gui</au><au>Jian-Wei Zhang</au><au>Li-Qiang Hu</au><au>Ye Wen-Zhong</au><au>Yong-Hui Li</au><au>Dong-Fa Gao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A background modeling method for videos based on weighted statistical classification</atitle><btitle>2013 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2013-07</date><risdate>2013</risdate><volume>1</volume><spage>456</spage><epage>462</epage><pages>456-462</pages><issn>2160-133X</issn><eisbn>1479902608</eisbn><eisbn>9781479902606</eisbn><abstract>In the field of intelligent video surveillance, foreground detection, moving target tracking and target recognition are the key technologies. They play an important role in target behavior analysis and understanding. In this paper a background modeling method based on weighted statistical classification is proposed. As a non-parametric background model, it uses several state categories to express multiple states of a background pixel. It does not require the background pixels to obey Gaussian distribution and needs no training. The weights are updated according to the matching history of the background pixel. The background state is determined by a threshold. Experiment results show that it obtains excellent detection results and real-time detection speed in complex scenes.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2013.6890508</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.1, p.456-462 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_6890508 |
source | IEEE Xplore All Conference Series |
subjects | Abstracts background modeling Foreground detection Gaussian mixture model no-parameter background modeling |
title | A background modeling method for videos based on weighted statistical classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20background%20modeling%20method%20for%20videos%20based%20on%20weighted%20statistical%20classification&rft.btitle=2013%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Jiang-Qin%20Gui&rft.date=2013-07&rft.volume=1&rft.spage=456&rft.epage=462&rft.pages=456-462&rft.issn=2160-133X&rft_id=info:doi/10.1109/ICMLC.2013.6890508&rft.eisbn=1479902608&rft.eisbn_list=9781479902606&rft_dat=%3Cieee_CHZPO%3E6890508%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-c6f9b99b3c79036c5916992e7df7024a1714c39095ea67ce9774aef7e536fe6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6890508&rfr_iscdi=true |