Loading…

A novel algorithm of biclustering based on the association rules

Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be...

Full description

Saved in:
Bibliographic Details
Main Authors: Yun Xue, Tiechen Li, Xiaohui Hu, Guohe Feng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1849
container_issue
container_start_page 1842
container_title
container_volume 4
creator Yun Xue
Tiechen Li
Xiaohui Hu
Guohe Feng
description Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.
doi_str_mv 10.1109/ICMLC.2013.6890896
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6890896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6890896</ieee_id><sourcerecordid>6890896</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53</originalsourceid><addsrcrecordid>eNotj9FKwzAYRiMoOOdeQG_yAq35k_RPcucoOgcVbzbwbiRpskW6VppO8O0duO_mcG4OfIQ8ACsBmHla1-9NXXIGokRtmDZ4Re5AKmMYR6avyYwDsgKE-Lwli5y_2HlKSm1gRp6XtB9-Qkdttx_GNB2OdIjUJd-d8hTG1O-pszm0dOjpdAjU5jz4ZKd09vHUhXxPbqLtclhcOCfb15dN_VY0H6t1vWyKBKqaCqy8lkK5GL3XCCZidBK5bb0EoZWMqkLNW-s9cskciBad4d4B847pUIk5efzvphDC7ntMRzv-7i6HxR9Hzkon</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel algorithm of biclustering based on the association rules</title><source>IEEE Xplore All Conference Series</source><creator>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</creator><creatorcontrib>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</creatorcontrib><description>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</description><identifier>ISSN: 2160-133X</identifier><identifier>EISBN: 1479902608</identifier><identifier>EISBN: 9781479902606</identifier><identifier>DOI: 10.1109/ICMLC.2013.6890896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Association rules ; Biclustering ; Biological system modeling ; Exact algorithm ; Frequent itemset ; Itemset matrix ; Itemsets ; Parallel computing</subject><ispartof>2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.4, p.1842-1849</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6890896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6890896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun Xue</creatorcontrib><creatorcontrib>Tiechen Li</creatorcontrib><creatorcontrib>Xiaohui Hu</creatorcontrib><creatorcontrib>Guohe Feng</creatorcontrib><title>A novel algorithm of biclustering based on the association rules</title><title>2013 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</description><subject>Abstracts</subject><subject>Association rules</subject><subject>Biclustering</subject><subject>Biological system modeling</subject><subject>Exact algorithm</subject><subject>Frequent itemset</subject><subject>Itemset matrix</subject><subject>Itemsets</subject><subject>Parallel computing</subject><issn>2160-133X</issn><isbn>1479902608</isbn><isbn>9781479902606</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYRiMoOOdeQG_yAq35k_RPcucoOgcVbzbwbiRpskW6VppO8O0duO_mcG4OfIQ8ACsBmHla1-9NXXIGokRtmDZ4Re5AKmMYR6avyYwDsgKE-Lwli5y_2HlKSm1gRp6XtB9-Qkdttx_GNB2OdIjUJd-d8hTG1O-pszm0dOjpdAjU5jz4ZKd09vHUhXxPbqLtclhcOCfb15dN_VY0H6t1vWyKBKqaCqy8lkK5GL3XCCZidBK5bb0EoZWMqkLNW-s9cskciBad4d4B847pUIk5efzvphDC7ntMRzv-7i6HxR9Hzkon</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Yun Xue</creator><creator>Tiechen Li</creator><creator>Xiaohui Hu</creator><creator>Guohe Feng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>A novel algorithm of biclustering based on the association rules</title><author>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracts</topic><topic>Association rules</topic><topic>Biclustering</topic><topic>Biological system modeling</topic><topic>Exact algorithm</topic><topic>Frequent itemset</topic><topic>Itemset matrix</topic><topic>Itemsets</topic><topic>Parallel computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yun Xue</creatorcontrib><creatorcontrib>Tiechen Li</creatorcontrib><creatorcontrib>Xiaohui Hu</creatorcontrib><creatorcontrib>Guohe Feng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun Xue</au><au>Tiechen Li</au><au>Xiaohui Hu</au><au>Guohe Feng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel algorithm of biclustering based on the association rules</atitle><btitle>2013 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2013-07</date><risdate>2013</risdate><volume>4</volume><spage>1842</spage><epage>1849</epage><pages>1842-1849</pages><issn>2160-133X</issn><eisbn>1479902608</eisbn><eisbn>9781479902606</eisbn><abstract>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2013.6890896</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.4, p.1842-1849
issn 2160-133X
language eng
recordid cdi_ieee_primary_6890896
source IEEE Xplore All Conference Series
subjects Abstracts
Association rules
Biclustering
Biological system modeling
Exact algorithm
Frequent itemset
Itemset matrix
Itemsets
Parallel computing
title A novel algorithm of biclustering based on the association rules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20algorithm%20of%20biclustering%20based%20on%20the%20association%20rules&rft.btitle=2013%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Yun%20Xue&rft.date=2013-07&rft.volume=4&rft.spage=1842&rft.epage=1849&rft.pages=1842-1849&rft.issn=2160-133X&rft_id=info:doi/10.1109/ICMLC.2013.6890896&rft.eisbn=1479902608&rft.eisbn_list=9781479902606&rft_dat=%3Cieee_CHZPO%3E6890896%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6890896&rfr_iscdi=true