Loading…
A novel algorithm of biclustering based on the association rules
Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1849 |
container_issue | |
container_start_page | 1842 |
container_title | |
container_volume | 4 |
creator | Yun Xue Tiechen Li Xiaohui Hu Guohe Feng |
description | Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved. |
doi_str_mv | 10.1109/ICMLC.2013.6890896 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6890896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6890896</ieee_id><sourcerecordid>6890896</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53</originalsourceid><addsrcrecordid>eNotj9FKwzAYRiMoOOdeQG_yAq35k_RPcucoOgcVbzbwbiRpskW6VppO8O0duO_mcG4OfIQ8ACsBmHla1-9NXXIGokRtmDZ4Re5AKmMYR6avyYwDsgKE-Lwli5y_2HlKSm1gRp6XtB9-Qkdttx_GNB2OdIjUJd-d8hTG1O-pszm0dOjpdAjU5jz4ZKd09vHUhXxPbqLtclhcOCfb15dN_VY0H6t1vWyKBKqaCqy8lkK5GL3XCCZidBK5bb0EoZWMqkLNW-s9cskciBad4d4B847pUIk5efzvphDC7ntMRzv-7i6HxR9Hzkon</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel algorithm of biclustering based on the association rules</title><source>IEEE Xplore All Conference Series</source><creator>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</creator><creatorcontrib>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</creatorcontrib><description>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</description><identifier>ISSN: 2160-133X</identifier><identifier>EISBN: 1479902608</identifier><identifier>EISBN: 9781479902606</identifier><identifier>DOI: 10.1109/ICMLC.2013.6890896</identifier><language>eng</language><publisher>IEEE</publisher><subject>Abstracts ; Association rules ; Biclustering ; Biological system modeling ; Exact algorithm ; Frequent itemset ; Itemset matrix ; Itemsets ; Parallel computing</subject><ispartof>2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.4, p.1842-1849</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6890896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6890896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yun Xue</creatorcontrib><creatorcontrib>Tiechen Li</creatorcontrib><creatorcontrib>Xiaohui Hu</creatorcontrib><creatorcontrib>Guohe Feng</creatorcontrib><title>A novel algorithm of biclustering based on the association rules</title><title>2013 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</description><subject>Abstracts</subject><subject>Association rules</subject><subject>Biclustering</subject><subject>Biological system modeling</subject><subject>Exact algorithm</subject><subject>Frequent itemset</subject><subject>Itemset matrix</subject><subject>Itemsets</subject><subject>Parallel computing</subject><issn>2160-133X</issn><isbn>1479902608</isbn><isbn>9781479902606</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9FKwzAYRiMoOOdeQG_yAq35k_RPcucoOgcVbzbwbiRpskW6VppO8O0duO_mcG4OfIQ8ACsBmHla1-9NXXIGokRtmDZ4Re5AKmMYR6avyYwDsgKE-Lwli5y_2HlKSm1gRp6XtB9-Qkdttx_GNB2OdIjUJd-d8hTG1O-pszm0dOjpdAjU5jz4ZKd09vHUhXxPbqLtclhcOCfb15dN_VY0H6t1vWyKBKqaCqy8lkK5GL3XCCZidBK5bb0EoZWMqkLNW-s9cskciBad4d4B847pUIk5efzvphDC7ntMRzv-7i6HxR9Hzkon</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Yun Xue</creator><creator>Tiechen Li</creator><creator>Xiaohui Hu</creator><creator>Guohe Feng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201307</creationdate><title>A novel algorithm of biclustering based on the association rules</title><author>Yun Xue ; Tiechen Li ; Xiaohui Hu ; Guohe Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abstracts</topic><topic>Association rules</topic><topic>Biclustering</topic><topic>Biological system modeling</topic><topic>Exact algorithm</topic><topic>Frequent itemset</topic><topic>Itemset matrix</topic><topic>Itemsets</topic><topic>Parallel computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yun Xue</creatorcontrib><creatorcontrib>Tiechen Li</creatorcontrib><creatorcontrib>Xiaohui Hu</creatorcontrib><creatorcontrib>Guohe Feng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yun Xue</au><au>Tiechen Li</au><au>Xiaohui Hu</au><au>Guohe Feng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel algorithm of biclustering based on the association rules</atitle><btitle>2013 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2013-07</date><risdate>2013</risdate><volume>4</volume><spage>1842</spage><epage>1849</epage><pages>1842-1849</pages><issn>2160-133X</issn><eisbn>1479902608</eisbn><eisbn>9781479902606</eisbn><abstract>Because of the ability of simultaneously capturing correlations among subsets of attributes (columns) and records (rows), biclustering is widely used in data mining applications such as biological data analysis, financial forecasting, and customer segmentation, etc. Since biclustering is known to be an NP-hard problem, biclusters are identified through heuristic approaches in most algorithms whose results are non-deterministic. A new algorithm based on association rules is proposed in this paper. It is deterministic and enables exhaustive discovery of coherent evolution biclusters. Furthermore, we propose the improved algorithm to avoid finding repetitive biclusters and this reduces the searching time. Finally, the improved algorithm is parallelized to accelerate the mining process, and significant speed-up ratio is achieved.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2013.6890896</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2013 International Conference on Machine Learning and Cybernetics, 2013, Vol.4, p.1842-1849 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_6890896 |
source | IEEE Xplore All Conference Series |
subjects | Abstracts Association rules Biclustering Biological system modeling Exact algorithm Frequent itemset Itemset matrix Itemsets Parallel computing |
title | A novel algorithm of biclustering based on the association rules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20algorithm%20of%20biclustering%20based%20on%20the%20association%20rules&rft.btitle=2013%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Yun%20Xue&rft.date=2013-07&rft.volume=4&rft.spage=1842&rft.epage=1849&rft.pages=1842-1849&rft.issn=2160-133X&rft_id=info:doi/10.1109/ICMLC.2013.6890896&rft.eisbn=1479902608&rft.eisbn_list=9781479902606&rft_dat=%3Cieee_CHZPO%3E6890896%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-65c8437bffcc8619f6fb462adc413874f75682dacc6240b13d6b92cb10cb08e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6890896&rfr_iscdi=true |