Loading…
Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming
This paper develops an online adaptive optimal control scheme to solve the infinite-horizon optimal control problem of continuous-time nonlinear systems with control constraints. A novel architecture is presented to approximate the Hamilton-Jacobi-Bellman equation. That is, only a critic neural netw...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8722 |
container_issue | |
container_start_page | 8717 |
container_title | |
container_volume | |
creator | Yang Xiong Liu Derong Wang Ding Ma Hongwen |
description | This paper develops an online adaptive optimal control scheme to solve the infinite-horizon optimal control problem of continuous-time nonlinear systems with control constraints. A novel architecture is presented to approximate the Hamilton-Jacobi-Bellman equation. That is, only a critic neural network is used to derive the optimal control instead of typical action-critic dual networks employed in neuro-dynamic programming methods. Meanwhile, unlike existing tuning laws for the critic, the newly developed critic update rule not only ensures convergence of the critic to the optimal control but also guarantees the closed-loop system to be uniformly ultimately bounded. In addition, no initial stabilizing control is required. Finally, an example is provided to verify the effectiveness of the present approach. |
doi_str_mv | 10.1109/ChiCC.2014.6896465 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6896465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6896465</ieee_id><sourcerecordid>6896465</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e01ff0b697c217704efd82f08c1b33a6c610df6aa5e586ed4e0ed92544c84d9c3</originalsourceid><addsrcrecordid>eNotkM1KAzEcxKMgWGtfQC95ga352nwcZVErFLzouaTJP21kNynJ7qFv72J7-g3MMDCD0BMla0qJeemOsevWjFCxltpIIdsbtDJKG61pK7lW_BYtGJW0YYape_RQ6y8hkhjKF-jY5VTHYmMCj3PqZ-J8GuNge-xyGkvuccjlX8c05ak2swk4XbK24HquIwwVTzWmA04wldz4c7JDdPhU8qHYYZidR3QXbF9hdeUS_by_fXebZvv18dm9bptIVTs2QGgIZC-NcowqRQQEr1kg2tE951Y6SYkP0toWWi3BCyDgDWuFcFp44_gSPV96IwDsTmVeUs676zH8D65gWyo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming</title><source>IEEE Xplore All Conference Series</source><creator>Yang Xiong ; Liu Derong ; Wang Ding ; Ma Hongwen</creator><creatorcontrib>Yang Xiong ; Liu Derong ; Wang Ding ; Ma Hongwen</creatorcontrib><description>This paper develops an online adaptive optimal control scheme to solve the infinite-horizon optimal control problem of continuous-time nonlinear systems with control constraints. A novel architecture is presented to approximate the Hamilton-Jacobi-Bellman equation. That is, only a critic neural network is used to derive the optimal control instead of typical action-critic dual networks employed in neuro-dynamic programming methods. Meanwhile, unlike existing tuning laws for the critic, the newly developed critic update rule not only ensures convergence of the critic to the optimal control but also guarantees the closed-loop system to be uniformly ultimately bounded. In addition, no initial stabilizing control is required. Finally, an example is provided to verify the effectiveness of the present approach.</description><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9789881563873</identifier><identifier>EISBN: 9881563879</identifier><identifier>DOI: 10.1109/ChiCC.2014.6896465</identifier><language>eng</language><publisher>TCCT, CAA</publisher><subject>Actuators ; Artificial neural networks ; Constrained input ; Equations ; Neuro-dynamic programming ; Nonlinear systems ; Online control ; Optimal control ; Programming</subject><ispartof>Proceedings of the 33rd Chinese Control Conference, 2014, p.8717-8722</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6896465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6896465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Xiong</creatorcontrib><creatorcontrib>Liu Derong</creatorcontrib><creatorcontrib>Wang Ding</creatorcontrib><creatorcontrib>Ma Hongwen</creatorcontrib><title>Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming</title><title>Proceedings of the 33rd Chinese Control Conference</title><addtitle>ChiCC</addtitle><description>This paper develops an online adaptive optimal control scheme to solve the infinite-horizon optimal control problem of continuous-time nonlinear systems with control constraints. A novel architecture is presented to approximate the Hamilton-Jacobi-Bellman equation. That is, only a critic neural network is used to derive the optimal control instead of typical action-critic dual networks employed in neuro-dynamic programming methods. Meanwhile, unlike existing tuning laws for the critic, the newly developed critic update rule not only ensures convergence of the critic to the optimal control but also guarantees the closed-loop system to be uniformly ultimately bounded. In addition, no initial stabilizing control is required. Finally, an example is provided to verify the effectiveness of the present approach.</description><subject>Actuators</subject><subject>Artificial neural networks</subject><subject>Constrained input</subject><subject>Equations</subject><subject>Neuro-dynamic programming</subject><subject>Nonlinear systems</subject><subject>Online control</subject><subject>Optimal control</subject><subject>Programming</subject><issn>2161-2927</issn><isbn>9789881563873</isbn><isbn>9881563879</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEcxKMgWGtfQC95ga352nwcZVErFLzouaTJP21kNynJ7qFv72J7-g3MMDCD0BMla0qJeemOsevWjFCxltpIIdsbtDJKG61pK7lW_BYtGJW0YYape_RQ6y8hkhjKF-jY5VTHYmMCj3PqZ-J8GuNge-xyGkvuccjlX8c05ak2swk4XbK24HquIwwVTzWmA04wldz4c7JDdPhU8qHYYZidR3QXbF9hdeUS_by_fXebZvv18dm9bptIVTs2QGgIZC-NcowqRQQEr1kg2tE951Y6SYkP0toWWi3BCyDgDWuFcFp44_gSPV96IwDsTmVeUs676zH8D65gWyo</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Yang Xiong</creator><creator>Liu Derong</creator><creator>Wang Ding</creator><creator>Ma Hongwen</creator><general>TCCT, CAA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming</title><author>Yang Xiong ; Liu Derong ; Wang Ding ; Ma Hongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e01ff0b697c217704efd82f08c1b33a6c610df6aa5e586ed4e0ed92544c84d9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Artificial neural networks</topic><topic>Constrained input</topic><topic>Equations</topic><topic>Neuro-dynamic programming</topic><topic>Nonlinear systems</topic><topic>Online control</topic><topic>Optimal control</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Xiong</creatorcontrib><creatorcontrib>Liu Derong</creatorcontrib><creatorcontrib>Wang Ding</creatorcontrib><creatorcontrib>Ma Hongwen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Xiong</au><au>Liu Derong</au><au>Wang Ding</au><au>Ma Hongwen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming</atitle><btitle>Proceedings of the 33rd Chinese Control Conference</btitle><stitle>ChiCC</stitle><date>2014-07</date><risdate>2014</risdate><spage>8717</spage><epage>8722</epage><pages>8717-8722</pages><eissn>2161-2927</eissn><eisbn>9789881563873</eisbn><eisbn>9881563879</eisbn><abstract>This paper develops an online adaptive optimal control scheme to solve the infinite-horizon optimal control problem of continuous-time nonlinear systems with control constraints. A novel architecture is presented to approximate the Hamilton-Jacobi-Bellman equation. That is, only a critic neural network is used to derive the optimal control instead of typical action-critic dual networks employed in neuro-dynamic programming methods. Meanwhile, unlike existing tuning laws for the critic, the newly developed critic update rule not only ensures convergence of the critic to the optimal control but also guarantees the closed-loop system to be uniformly ultimately bounded. In addition, no initial stabilizing control is required. Finally, an example is provided to verify the effectiveness of the present approach.</abstract><pub>TCCT, CAA</pub><doi>10.1109/ChiCC.2014.6896465</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2161-2927 |
ispartof | Proceedings of the 33rd Chinese Control Conference, 2014, p.8717-8722 |
issn | 2161-2927 |
language | eng |
recordid | cdi_ieee_primary_6896465 |
source | IEEE Xplore All Conference Series |
subjects | Actuators Artificial neural networks Constrained input Equations Neuro-dynamic programming Nonlinear systems Online control Optimal control Programming |
title | Constrained online optimal control for continuous-time nonlinear systems using neuro-dynamic programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constrained%20online%20optimal%20control%20for%20continuous-time%20nonlinear%20systems%20using%20neuro-dynamic%20programming&rft.btitle=Proceedings%20of%20the%2033rd%20Chinese%20Control%20Conference&rft.au=Yang%20Xiong&rft.date=2014-07&rft.spage=8717&rft.epage=8722&rft.pages=8717-8722&rft.eissn=2161-2927&rft_id=info:doi/10.1109/ChiCC.2014.6896465&rft.eisbn=9789881563873&rft.eisbn_list=9881563879&rft_dat=%3Cieee_CHZPO%3E6896465%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-e01ff0b697c217704efd82f08c1b33a6c610df6aa5e586ed4e0ed92544c84d9c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6896465&rfr_iscdi=true |