Loading…
Determining the Optimal Redistribution for a Given Data Partition
The classical redistribution problem aims at optimally scheduling communications when moving from an initial data distribution to a target distribution where each processor will host a subset of data items. However, modern computing platforms are equipped with a powerful interconnection switch, and...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c253t-3d6e0486fdb0ccbc3db8c513f5e1011b887362c815554b00fb8fde5eb73e3e4c3 |
---|---|
cites | |
container_end_page | 102 |
container_issue | |
container_start_page | 95 |
container_title | |
container_volume | |
creator | Herault, Thomas Herrmann, Julien Marchal, Loris Robert, Yves |
description | The classical redistribution problem aims at optimally scheduling communications when moving from an initial data distribution to a target distribution where each processor will host a subset of data items. However, modern computing platforms are equipped with a powerful interconnection switch, and the cost of a given communication is (almost) independent of the location of its sender and receiver. This leads to generalizing the redistribution problem as follows: find the optimal one-toone mapping of the subsets of data items onto the processors for which the cost of the redistribution is minimal. This paper studies the complexity of this generalized problem. We provide optimal algorithms and evaluate their gain over classical redistribution through simulations. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation (defined by new subsets) that minimize the cost of redistribution followed by a simple computation kernel. |
doi_str_mv | 10.1109/ISPDC.2014.16 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6900206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6900206</ieee_id><sourcerecordid>6900206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-3d6e0486fdb0ccbc3db8c513f5e1011b887362c815554b00fb8fde5eb73e3e4c3</originalsourceid><addsrcrecordid>eNpFjs1KAzEURiMqWGuXrtzkBWa8N5lkkmWZ2lootPizLknmjkbaaclEwbdXUXD1cThw-Bi7RigRwd4uHzezphSAVYn6hF1iVVurLNr69B-MPWMjIWtbKKnEBZsMwxsASDTGGjti0xllSvvYx_6F51fi62OOe7fjD9TGIafo33M89Lw7JO74In5Qz2cuO75xKccfdcXOO7cbaPK3Y_Y8v3tq7ovVerFspqsiCCVzIVtNUBndtR5C8EG23gSFslOEgOiNqaUWwaBSqvIAnTddS4p8LUlSFeSY3fx2IxFtj-n7ZfrcagsgQMsv3gpLpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Determining the Optimal Redistribution for a Given Data Partition</title><source>IEEE Xplore All Conference Series</source><creator>Herault, Thomas ; Herrmann, Julien ; Marchal, Loris ; Robert, Yves</creator><creatorcontrib>Herault, Thomas ; Herrmann, Julien ; Marchal, Loris ; Robert, Yves</creatorcontrib><description>The classical redistribution problem aims at optimally scheduling communications when moving from an initial data distribution to a target distribution where each processor will host a subset of data items. However, modern computing platforms are equipped with a powerful interconnection switch, and the cost of a given communication is (almost) independent of the location of its sender and receiver. This leads to generalizing the redistribution problem as follows: find the optimal one-toone mapping of the subsets of data items onto the processors for which the cost of the redistribution is minimal. This paper studies the complexity of this generalized problem. We provide optimal algorithms and evaluate their gain over classical redistribution through simulations. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation (defined by new subsets) that minimize the cost of redistribution followed by a simple computation kernel.</description><identifier>ISSN: 2379-5352</identifier><identifier>ISBN: 1479959189</identifier><identifier>ISBN: 9781479959181</identifier><identifier>EISBN: 1479959197</identifier><identifier>EISBN: 9781479959198</identifier><identifier>DOI: 10.1109/ISPDC.2014.16</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bipartite graph ; Complexity theory ; Distributed databases ; Kernel ; Measurement ; Optimization ; Partitioning algorithms</subject><ispartof>2014 IEEE 13th International Symposium on Parallel and Distributed Computing, 2014, p.95-102</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-3d6e0486fdb0ccbc3db8c513f5e1011b887362c815554b00fb8fde5eb73e3e4c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6900206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6900206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herault, Thomas</creatorcontrib><creatorcontrib>Herrmann, Julien</creatorcontrib><creatorcontrib>Marchal, Loris</creatorcontrib><creatorcontrib>Robert, Yves</creatorcontrib><title>Determining the Optimal Redistribution for a Given Data Partition</title><title>2014 IEEE 13th International Symposium on Parallel and Distributed Computing</title><addtitle>ISPDC</addtitle><description>The classical redistribution problem aims at optimally scheduling communications when moving from an initial data distribution to a target distribution where each processor will host a subset of data items. However, modern computing platforms are equipped with a powerful interconnection switch, and the cost of a given communication is (almost) independent of the location of its sender and receiver. This leads to generalizing the redistribution problem as follows: find the optimal one-toone mapping of the subsets of data items onto the processors for which the cost of the redistribution is minimal. This paper studies the complexity of this generalized problem. We provide optimal algorithms and evaluate their gain over classical redistribution through simulations. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation (defined by new subsets) that minimize the cost of redistribution followed by a simple computation kernel.</description><subject>Bipartite graph</subject><subject>Complexity theory</subject><subject>Distributed databases</subject><subject>Kernel</subject><subject>Measurement</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><issn>2379-5352</issn><isbn>1479959189</isbn><isbn>9781479959181</isbn><isbn>1479959197</isbn><isbn>9781479959198</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFjs1KAzEURiMqWGuXrtzkBWa8N5lkkmWZ2lootPizLknmjkbaaclEwbdXUXD1cThw-Bi7RigRwd4uHzezphSAVYn6hF1iVVurLNr69B-MPWMjIWtbKKnEBZsMwxsASDTGGjti0xllSvvYx_6F51fi62OOe7fjD9TGIafo33M89Lw7JO74In5Qz2cuO75xKccfdcXOO7cbaPK3Y_Y8v3tq7ovVerFspqsiCCVzIVtNUBndtR5C8EG23gSFslOEgOiNqaUWwaBSqvIAnTddS4p8LUlSFeSY3fx2IxFtj-n7ZfrcagsgQMsv3gpLpg</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Herault, Thomas</creator><creator>Herrmann, Julien</creator><creator>Marchal, Loris</creator><creator>Robert, Yves</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201406</creationdate><title>Determining the Optimal Redistribution for a Given Data Partition</title><author>Herault, Thomas ; Herrmann, Julien ; Marchal, Loris ; Robert, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-3d6e0486fdb0ccbc3db8c513f5e1011b887362c815554b00fb8fde5eb73e3e4c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bipartite graph</topic><topic>Complexity theory</topic><topic>Distributed databases</topic><topic>Kernel</topic><topic>Measurement</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Herault, Thomas</creatorcontrib><creatorcontrib>Herrmann, Julien</creatorcontrib><creatorcontrib>Marchal, Loris</creatorcontrib><creatorcontrib>Robert, Yves</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herault, Thomas</au><au>Herrmann, Julien</au><au>Marchal, Loris</au><au>Robert, Yves</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Determining the Optimal Redistribution for a Given Data Partition</atitle><btitle>2014 IEEE 13th International Symposium on Parallel and Distributed Computing</btitle><stitle>ISPDC</stitle><date>2014-06</date><risdate>2014</risdate><spage>95</spage><epage>102</epage><pages>95-102</pages><issn>2379-5352</issn><isbn>1479959189</isbn><isbn>9781479959181</isbn><eisbn>1479959197</eisbn><eisbn>9781479959198</eisbn><coden>IEEPAD</coden><abstract>The classical redistribution problem aims at optimally scheduling communications when moving from an initial data distribution to a target distribution where each processor will host a subset of data items. However, modern computing platforms are equipped with a powerful interconnection switch, and the cost of a given communication is (almost) independent of the location of its sender and receiver. This leads to generalizing the redistribution problem as follows: find the optimal one-toone mapping of the subsets of data items onto the processors for which the cost of the redistribution is minimal. This paper studies the complexity of this generalized problem. We provide optimal algorithms and evaluate their gain over classical redistribution through simulations. We also show the NP-hardness of the problem to find the optimal data partition and processor permutation (defined by new subsets) that minimize the cost of redistribution followed by a simple computation kernel.</abstract><pub>IEEE</pub><doi>10.1109/ISPDC.2014.16</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-5352 |
ispartof | 2014 IEEE 13th International Symposium on Parallel and Distributed Computing, 2014, p.95-102 |
issn | 2379-5352 |
language | eng |
recordid | cdi_ieee_primary_6900206 |
source | IEEE Xplore All Conference Series |
subjects | Bipartite graph Complexity theory Distributed databases Kernel Measurement Optimization Partitioning algorithms |
title | Determining the Optimal Redistribution for a Given Data Partition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Determining%20the%20Optimal%20Redistribution%20for%20a%20Given%20Data%20Partition&rft.btitle=2014%20IEEE%2013th%20International%20Symposium%20on%20Parallel%20and%20Distributed%20Computing&rft.au=Herault,%20Thomas&rft.date=2014-06&rft.spage=95&rft.epage=102&rft.pages=95-102&rft.issn=2379-5352&rft.isbn=1479959189&rft.isbn_list=9781479959181&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISPDC.2014.16&rft.eisbn=1479959197&rft.eisbn_list=9781479959198&rft_dat=%3Cieee_CHZPO%3E6900206%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-3d6e0486fdb0ccbc3db8c513f5e1011b887362c815554b00fb8fde5eb73e3e4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6900206&rfr_iscdi=true |