Loading…

Linear fusion of estimators with Gaussian mixture errors under unknown dependences

In decentralised state estimation, there are two key problems. The first one is how to fuse estimators that are given by the local processing of locally obtained data. The second one is to compute the description of the fused estimator error supposing the fusion rule is specified. Alternatively, if...

Full description

Saved in:
Bibliographic Details
Main Authors: Ajgl, Jiri, Simandl, Miroslav
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Ajgl, Jiri
Simandl, Miroslav
description In decentralised state estimation, there are two key problems. The first one is how to fuse estimators that are given by the local processing of locally obtained data. The second one is to compute the description of the fused estimator error supposing the fusion rule is specified. Alternatively, if the global knowledge of the decentralised problem is not available, the second problem may be to provide such a description that does not overvalue the quality of the fused estimator. The last problem is followed in this paper. For local estimator errors with Gaussian mixture densities, an underlying joint Gaussian mixture is supposed. The component indices of the joint Gaussian mixture are supposed to be hidden discrete random variables with unknown probability function. The estimator fusion is considered to be linear with fixed weights. An upper bound of the mean square error matrix of the fused estimator is designed. In a case study, the newly designed upper bound is compared with a current upper bound and a density approach is discussed.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6916140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6916140</ieee_id><sourcerecordid>6916140</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-80ab5edc4432789eb76e00604993003ba0119b7c69c05995cb3c375454d193fb3</originalsourceid><addsrcrecordid>eNotjs1KAzEUhdOFoNY-gZu8wMBN8zd3KaW2woAg3ZckcwejNlOSDNW374huzoHvwMdZsPtWIYi11FrcslUpHwAgrNW6VXfsrYuJXObDVOKY-DhwKjWeXB1z4ZdY3_nOTaVEl_gpftcpE6ecf8cp9ZTn_EzjJfGezjSDFKg8sJvBfRVa_feSHZ63h82-6V53L5unrokItWnBeU19UEqubYvkrSEAAwpRAkjvQAj0NhgMoBF18DJIq5VWvUA5eLlkj3_aSETHc55P55-jQWGEAnkFwYFIug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Linear fusion of estimators with Gaussian mixture errors under unknown dependences</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ajgl, Jiri ; Simandl, Miroslav</creator><creatorcontrib>Ajgl, Jiri ; Simandl, Miroslav</creatorcontrib><description>In decentralised state estimation, there are two key problems. The first one is how to fuse estimators that are given by the local processing of locally obtained data. The second one is to compute the description of the fused estimator error supposing the fusion rule is specified. Alternatively, if the global knowledge of the decentralised problem is not available, the second problem may be to provide such a description that does not overvalue the quality of the fused estimator. The last problem is followed in this paper. For local estimator errors with Gaussian mixture densities, an underlying joint Gaussian mixture is supposed. The component indices of the joint Gaussian mixture are supposed to be hidden discrete random variables with unknown probability function. The estimator fusion is considered to be linear with fixed weights. An upper bound of the mean square error matrix of the fused estimator is designed. In a case study, the newly designed upper bound is compared with a current upper bound and a density approach is discussed.</description><identifier>EISBN: 8490123551</identifier><identifier>EISBN: 9788490123553</identifier><language>eng</language><publisher>International Society of Information Fusion</publisher><subject>Covariance matrices ; decentralised estimation ; Field-flow fractionation ; Gaussian mixtures ; generalised Covariance Intersection ; information fusion ; Joints ; Mean square error methods ; Random variables ; unknown dependence ; Upper bound ; Vectors</subject><ispartof>17th International Conference on Information Fusion (FUSION), 2014, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6916140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6916140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ajgl, Jiri</creatorcontrib><creatorcontrib>Simandl, Miroslav</creatorcontrib><title>Linear fusion of estimators with Gaussian mixture errors under unknown dependences</title><title>17th International Conference on Information Fusion (FUSION)</title><addtitle>ICIF</addtitle><description>In decentralised state estimation, there are two key problems. The first one is how to fuse estimators that are given by the local processing of locally obtained data. The second one is to compute the description of the fused estimator error supposing the fusion rule is specified. Alternatively, if the global knowledge of the decentralised problem is not available, the second problem may be to provide such a description that does not overvalue the quality of the fused estimator. The last problem is followed in this paper. For local estimator errors with Gaussian mixture densities, an underlying joint Gaussian mixture is supposed. The component indices of the joint Gaussian mixture are supposed to be hidden discrete random variables with unknown probability function. The estimator fusion is considered to be linear with fixed weights. An upper bound of the mean square error matrix of the fused estimator is designed. In a case study, the newly designed upper bound is compared with a current upper bound and a density approach is discussed.</description><subject>Covariance matrices</subject><subject>decentralised estimation</subject><subject>Field-flow fractionation</subject><subject>Gaussian mixtures</subject><subject>generalised Covariance Intersection</subject><subject>information fusion</subject><subject>Joints</subject><subject>Mean square error methods</subject><subject>Random variables</subject><subject>unknown dependence</subject><subject>Upper bound</subject><subject>Vectors</subject><isbn>8490123551</isbn><isbn>9788490123553</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjs1KAzEUhdOFoNY-gZu8wMBN8zd3KaW2woAg3ZckcwejNlOSDNW374huzoHvwMdZsPtWIYi11FrcslUpHwAgrNW6VXfsrYuJXObDVOKY-DhwKjWeXB1z4ZdY3_nOTaVEl_gpftcpE6ecf8cp9ZTn_EzjJfGezjSDFKg8sJvBfRVa_feSHZ63h82-6V53L5unrokItWnBeU19UEqubYvkrSEAAwpRAkjvQAj0NhgMoBF18DJIq5VWvUA5eLlkj3_aSETHc55P55-jQWGEAnkFwYFIug</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Ajgl, Jiri</creator><creator>Simandl, Miroslav</creator><general>International Society of Information Fusion</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201407</creationdate><title>Linear fusion of estimators with Gaussian mixture errors under unknown dependences</title><author>Ajgl, Jiri ; Simandl, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-80ab5edc4432789eb76e00604993003ba0119b7c69c05995cb3c375454d193fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Covariance matrices</topic><topic>decentralised estimation</topic><topic>Field-flow fractionation</topic><topic>Gaussian mixtures</topic><topic>generalised Covariance Intersection</topic><topic>information fusion</topic><topic>Joints</topic><topic>Mean square error methods</topic><topic>Random variables</topic><topic>unknown dependence</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Ajgl, Jiri</creatorcontrib><creatorcontrib>Simandl, Miroslav</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ajgl, Jiri</au><au>Simandl, Miroslav</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linear fusion of estimators with Gaussian mixture errors under unknown dependences</atitle><btitle>17th International Conference on Information Fusion (FUSION)</btitle><stitle>ICIF</stitle><date>2014-07</date><risdate>2014</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><eisbn>8490123551</eisbn><eisbn>9788490123553</eisbn><abstract>In decentralised state estimation, there are two key problems. The first one is how to fuse estimators that are given by the local processing of locally obtained data. The second one is to compute the description of the fused estimator error supposing the fusion rule is specified. Alternatively, if the global knowledge of the decentralised problem is not available, the second problem may be to provide such a description that does not overvalue the quality of the fused estimator. The last problem is followed in this paper. For local estimator errors with Gaussian mixture densities, an underlying joint Gaussian mixture is supposed. The component indices of the joint Gaussian mixture are supposed to be hidden discrete random variables with unknown probability function. The estimator fusion is considered to be linear with fixed weights. An upper bound of the mean square error matrix of the fused estimator is designed. In a case study, the newly designed upper bound is compared with a current upper bound and a density approach is discussed.</abstract><pub>International Society of Information Fusion</pub><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 8490123551
ispartof 17th International Conference on Information Fusion (FUSION), 2014, p.1-8
issn
language eng
recordid cdi_ieee_primary_6916140
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Covariance matrices
decentralised estimation
Field-flow fractionation
Gaussian mixtures
generalised Covariance Intersection
information fusion
Joints
Mean square error methods
Random variables
unknown dependence
Upper bound
Vectors
title Linear fusion of estimators with Gaussian mixture errors under unknown dependences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linear%20fusion%20of%20estimators%20with%20Gaussian%20mixture%20errors%20under%20unknown%20dependences&rft.btitle=17th%20International%20Conference%20on%20Information%20Fusion%20(FUSION)&rft.au=Ajgl,%20Jiri&rft.date=2014-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft_id=info:doi/&rft.eisbn=8490123551&rft.eisbn_list=9788490123553&rft_dat=%3Cieee_6IE%3E6916140%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-80ab5edc4432789eb76e00604993003ba0119b7c69c05995cb3c375454d193fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6916140&rfr_iscdi=true