Loading…

A Parking Occupancy Detection Algorithm Based on AMR Sensor

Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as bina...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2015-02, Vol.15 (2), p.1261-1269
Main Authors: Zusheng Zhang, Ming Tao, Huaqiang Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3
cites cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3
container_end_page 1269
container_issue 2
container_start_page 1261
container_title IEEE sensors journal
container_volume 15
creator Zusheng Zhang
Ming Tao
Huaqiang Yuan
description Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.
doi_str_mv 10.1109/JSEN.2014.2362122
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6919252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6919252</ieee_id><sourcerecordid>10_1109_JSEN_2014_2362122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</originalsourceid><addsrcrecordid>eNo9j8tOAkEURDtGExH9AOOmf2Dw3n5OxxUivoJihIW7yXRzwVGYId3jgr_XCcRVVSpVlRzGLhEGiOCun2fj14EAVAMhjUAhjlgPtc4ztCo_7ryETEn7ccrOUvoCQGe17bGbIX8r43dVr_g0hJ9tWYcdv6OWQls1NR-uV02s2s8Nvy0TLXgXvbzzGdWpiefsZFmuE10ctM_m9-P56DGbTB-eRsNJFqTENtMhBwJlDBjKw9J7L4Ty5HIZlAathAWLzhmv0EtckIEy-IDCW4OUe9lnuL8NsUkp0rLYxmpTxl2BUHTwRQdfdPDFAf5vc7XfVET03zcOndBC_gL-eFRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><source>IEEE Xplore (Online service)</source><creator>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</creator><creatorcontrib>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</creatorcontrib><description>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2014.2362122</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>AMR sensor ; Arrays ; Fluctuations ; Interference ; Magnetic sensors ; parking occupancy detection ; Vehicle detection ; Vehicles ; wireless sensor networks</subject><ispartof>IEEE sensors journal, 2015-02, Vol.15 (2), p.1261-1269</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</citedby><cites>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</cites><orcidid>0000-0002-4030-1663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6919252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zusheng Zhang</creatorcontrib><creatorcontrib>Ming Tao</creatorcontrib><creatorcontrib>Huaqiang Yuan</creatorcontrib><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</description><subject>AMR sensor</subject><subject>Arrays</subject><subject>Fluctuations</subject><subject>Interference</subject><subject>Magnetic sensors</subject><subject>parking occupancy detection</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><subject>wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOAkEURDtGExH9AOOmf2Dw3n5OxxUivoJihIW7yXRzwVGYId3jgr_XCcRVVSpVlRzGLhEGiOCun2fj14EAVAMhjUAhjlgPtc4ztCo_7ryETEn7ccrOUvoCQGe17bGbIX8r43dVr_g0hJ9tWYcdv6OWQls1NR-uV02s2s8Nvy0TLXgXvbzzGdWpiefsZFmuE10ctM_m9-P56DGbTB-eRsNJFqTENtMhBwJlDBjKw9J7L4Ty5HIZlAathAWLzhmv0EtckIEy-IDCW4OUe9lnuL8NsUkp0rLYxmpTxl2BUHTwRQdfdPDFAf5vc7XfVET03zcOndBC_gL-eFRB</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Zusheng Zhang</creator><creator>Ming Tao</creator><creator>Huaqiang Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4030-1663</orcidid></search><sort><creationdate>201502</creationdate><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><author>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AMR sensor</topic><topic>Arrays</topic><topic>Fluctuations</topic><topic>Interference</topic><topic>Magnetic sensors</topic><topic>parking occupancy detection</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zusheng Zhang</creatorcontrib><creatorcontrib>Ming Tao</creatorcontrib><creatorcontrib>Huaqiang Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zusheng Zhang</au><au>Ming Tao</au><au>Huaqiang Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parking Occupancy Detection Algorithm Based on AMR Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2015-02</date><risdate>2015</risdate><volume>15</volume><issue>2</issue><spage>1261</spage><epage>1269</epage><pages>1261-1269</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2014.2362122</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4030-1663</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2015-02, Vol.15 (2), p.1261-1269
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_6919252
source IEEE Xplore (Online service)
subjects AMR sensor
Arrays
Fluctuations
Interference
Magnetic sensors
parking occupancy detection
Vehicle detection
Vehicles
wireless sensor networks
title A Parking Occupancy Detection Algorithm Based on AMR Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parking%20Occupancy%20Detection%20Algorithm%20Based%20on%20AMR%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zusheng%20Zhang&rft.date=2015-02&rft.volume=15&rft.issue=2&rft.spage=1261&rft.epage=1269&rft.pages=1261-1269&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2014.2362122&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2014_2362122%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6919252&rfr_iscdi=true