Loading…
A Parking Occupancy Detection Algorithm Based on AMR Sensor
Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as bina...
Saved in:
Published in: | IEEE sensors journal 2015-02, Vol.15 (2), p.1261-1269 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3 |
container_end_page | 1269 |
container_issue | 2 |
container_start_page | 1261 |
container_title | IEEE sensors journal |
container_volume | 15 |
creator | Zusheng Zhang Ming Tao Huaqiang Yuan |
description | Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%. |
doi_str_mv | 10.1109/JSEN.2014.2362122 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6919252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6919252</ieee_id><sourcerecordid>10_1109_JSEN_2014_2362122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</originalsourceid><addsrcrecordid>eNo9j8tOAkEURDtGExH9AOOmf2Dw3n5OxxUivoJihIW7yXRzwVGYId3jgr_XCcRVVSpVlRzGLhEGiOCun2fj14EAVAMhjUAhjlgPtc4ztCo_7ryETEn7ccrOUvoCQGe17bGbIX8r43dVr_g0hJ9tWYcdv6OWQls1NR-uV02s2s8Nvy0TLXgXvbzzGdWpiefsZFmuE10ctM_m9-P56DGbTB-eRsNJFqTENtMhBwJlDBjKw9J7L4Ty5HIZlAathAWLzhmv0EtckIEy-IDCW4OUe9lnuL8NsUkp0rLYxmpTxl2BUHTwRQdfdPDFAf5vc7XfVET03zcOndBC_gL-eFRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><source>IEEE Xplore (Online service)</source><creator>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</creator><creatorcontrib>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</creatorcontrib><description>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2014.2362122</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>AMR sensor ; Arrays ; Fluctuations ; Interference ; Magnetic sensors ; parking occupancy detection ; Vehicle detection ; Vehicles ; wireless sensor networks</subject><ispartof>IEEE sensors journal, 2015-02, Vol.15 (2), p.1261-1269</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</citedby><cites>FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</cites><orcidid>0000-0002-4030-1663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6919252$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zusheng Zhang</creatorcontrib><creatorcontrib>Ming Tao</creatorcontrib><creatorcontrib>Huaqiang Yuan</creatorcontrib><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</description><subject>AMR sensor</subject><subject>Arrays</subject><subject>Fluctuations</subject><subject>Interference</subject><subject>Magnetic sensors</subject><subject>parking occupancy detection</subject><subject>Vehicle detection</subject><subject>Vehicles</subject><subject>wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOAkEURDtGExH9AOOmf2Dw3n5OxxUivoJihIW7yXRzwVGYId3jgr_XCcRVVSpVlRzGLhEGiOCun2fj14EAVAMhjUAhjlgPtc4ztCo_7ryETEn7ccrOUvoCQGe17bGbIX8r43dVr_g0hJ9tWYcdv6OWQls1NR-uV02s2s8Nvy0TLXgXvbzzGdWpiefsZFmuE10ctM_m9-P56DGbTB-eRsNJFqTENtMhBwJlDBjKw9J7L4Ty5HIZlAathAWLzhmv0EtckIEy-IDCW4OUe9lnuL8NsUkp0rLYxmpTxl2BUHTwRQdfdPDFAf5vc7XfVET03zcOndBC_gL-eFRB</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Zusheng Zhang</creator><creator>Ming Tao</creator><creator>Huaqiang Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4030-1663</orcidid></search><sort><creationdate>201502</creationdate><title>A Parking Occupancy Detection Algorithm Based on AMR Sensor</title><author>Zusheng Zhang ; Ming Tao ; Huaqiang Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>AMR sensor</topic><topic>Arrays</topic><topic>Fluctuations</topic><topic>Interference</topic><topic>Magnetic sensors</topic><topic>parking occupancy detection</topic><topic>Vehicle detection</topic><topic>Vehicles</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zusheng Zhang</creatorcontrib><creatorcontrib>Ming Tao</creatorcontrib><creatorcontrib>Huaqiang Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zusheng Zhang</au><au>Ming Tao</au><au>Huaqiang Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Parking Occupancy Detection Algorithm Based on AMR Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2015-02</date><risdate>2015</risdate><volume>15</volume><issue>2</issue><spage>1261</spage><epage>1269</epage><pages>1261-1269</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Recently, with the explosive increase of automobiles in cities, parking problems are serious and even worsen in many cities. This paper proposes a new algorithm for parking occupancy detection based on the use of anisotropic magnetoresistive sensors. Parking occupancy detection is abstracted as binary pattern recognition problem. According to the status of the parking space, the recognition result contains two categories: vacant and occupied. The feature extraction method of the parking magnetic signal is proposed. In addition, the classification criteria are derived based on the distance discriminate analysis method. Eighty-two sensor nodes are deployed on the roadside parking spaces. By running the system for six months, we observed that the accuracy rate of the proposed parking occupancy detection algorithm is better than 98%.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2014.2362122</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4030-1663</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2015-02, Vol.15 (2), p.1261-1269 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_6919252 |
source | IEEE Xplore (Online service) |
subjects | AMR sensor Arrays Fluctuations Interference Magnetic sensors parking occupancy detection Vehicle detection Vehicles wireless sensor networks |
title | A Parking Occupancy Detection Algorithm Based on AMR Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Parking%20Occupancy%20Detection%20Algorithm%20Based%20on%20AMR%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zusheng%20Zhang&rft.date=2015-02&rft.volume=15&rft.issue=2&rft.spage=1261&rft.epage=1269&rft.pages=1261-1269&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2014.2362122&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSEN_2014_2362122%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-5c80e046606e8cfbbb224be983c4505427071996b41b31de60acbc12b761e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6919252&rfr_iscdi=true |